Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triblock Spheres Provide a Simple Path to Complext Structures

20.01.2011
University of Illinois materials scientists have developed a simple, generalizable technique to fabricate complex structures that assemble themselves.

Their advance, published in the Jan. 20 issue of Nature, utilizes a new class of self-assembling materials that they developed. The team demonstrated that they can produce a large, complex structure – an intricate lattice – from tiny colloidal particles called triblock Janus spheres.

“This is a big step forward in showing how to make non-trivial, non-obvious structures from a very simple thing,” said Steve Granick, Founder Professor of Engineering at the University of Illinois and a professor of materials science and engineering, chemistry, and physics. “People know a lot about how to do it with molecules – soaps for example – but scientists and engineers know very little about how to make it happen with particles. Particles are very different from molecules: They’re big, they’re nonflexible, and they have lots of critically different materials properties.”

Much of the work to date in making complicated structures from colloidal particles has been done through computer simulation. Researchers model complicated designs built of highly complicated particles.

However, creating complicated building blocks for experimental use is difficult. By contrast, the triblock Janus spheres’ elegant simplicity makes them ideal for real-world manufacture.

“It was conceptually challenging to fabricate a complex porous material from a simple design, especially in the field of colloidal particles,” said graduate student Qian Chen, a co-author of the paper. “Here, we achieve that with really easy designs that we can use in experiments.”

Granick’s group is well-known for its work with Janus particles. Named for the dual-natured Roman god, Janus particles have two sides or segments of different surface chemistry. Having explored spheres with two different-natured halves, Chen had the idea to make spheres with three “stripes” of reactivity, dubbed triblock Janus spheres. The center band is charged, while the poles are hydrophobic, or water-adverse.

“After many experiments with Janus particles, I wanted to see if adding one more segment would introduce more surprises,” Chen said. “Usually in colloid science people use particles that have a uniform surface chemistry. But for this particle, it’s like a block polymer. It has three segments of chemistry.”

In a salt-water solution, the hydrophobic poles are drawn together, while the charged equators repel one another. As a result, the spheres form a complex lattice where only the poles are in contact with one another. The hydrophobic polar caps are large enough to come into contact with two other spheres. This causes the spheres to arrange into a formation like a six-pointed star, creating a sheet of delicate lace.

Such porous sheets of schizoid particles, hydrophobic and hydrophilic at the same time, could have applications as specialized filters.

“It’s like a better soap,” Granick said. “Just as soap is very good at dissolving both fats and water-soluble things, our new lacy lattice can also filter out both water-soluble and oil-soluble matter. We have this wonderful self-produced lacy structure that’s oil-loving and water-loving at different parts in a periodic array.”

The team could apply their simple particle design to fabricate other planar laces. Adjusting the size of the spheres or the proportion of the bands could lead to other lattice patterns or tuned pore sizes. In addition, further exploration of triblock spheres and other Janus particles could open doors to a broad area of self-assembly of complex structures from simple materials.

“Someday maybe we could have a soup of different components, remove some of it, and there would be a microelectronic chip,” Granick said. “It’s a brand new area. The materials are so different that the structures that they form will be different.”

Research scientist Sung Chul Bae also was a co-author of the paper. The U.S. Department of Energy sponsored this work through the Frederick Seitz Materials Research Laboratory at the U. of I.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>