Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trapping T-Rays for Better Security Scanners

12.07.2013
Medical diagnostic and security scanners with higher sensitivity could result from University of Adelaide research into detecting T-rays (terahertz waves).

Published in the journal Advanced Optical Materials, the researchers describe a novel structure which traps terahertz waves in tiny (micro-scale) holes to produce much higher contrast imaging than currently possible.

Terahertz waves, which are electromagnetic waves with frequencies between those used for mobile phone communications and for optical fibre communications, are used for some airport body scanners and other security scanners to see through packages and clothes. They are also capable of distinguishing malignant from healthy tissues for cancer detection.

“This work takes an unconventional path to detecting terahertz waves,” says Dr Withawat Withayachumnankul, project leader and ARC Postdoctoral Fellow in the University’s School of Electrical and Electronic Engineering.

Dr Withayachumnankul has worked with RMIT University in Melbourne and Albert Ludwigs University of Freiburg in Germany to produce the new structure using metamaterials (materials that show non-natural properties with the use of carefully engineered structures).

The structure is made of tiny (micro-scale) cavities etched into the surface of silicon. Terahertz waves that hit the structure are captured and compressed inside the cavities.

“By tailoring the silicon properties through the use of micro-structures (the size of a cross-section of human hair) it is possible to trap and confine the waves in a volume much smaller than the wavelength of the terahertz waves,” says Dr Withayachumnankul.

“This significantly improves the efficiency of terahertz devices such as scanners and will have broad impact on biomedicine and homeland security, where better contrast means more accurate identification.”

RMIT team leader Dr Sharath Sriram says: “We needed to carefully select appropriate materials and processes to produce this device. We couldn’t construct the micro-cavities in our first choice of material so we changed to silicon which we had to adapt to make it slightly electrically conductive. We then used established silicon microfabrication techniques to create the micro-cavities, exploiting the conductive properties.”

The new structure could be added to conventional terahertz imaging devices to enhance their performance.

The research was supported by the Australian Research Council and partially by a Victoria Fellowship to Dr Sriram.

Photo caption: A concept design of the silicon-based metamaterial. For a larger version of the file email media@adelaide.edu.au

Media Contact:

Dr Withawat Withayachumnankul
ARC Postdoctoral Research Fellow
School of Electrical and Electronic Engineering
The University of Adelaide
Phone: +61 8313 1812
Mobile: +61 402 946 480
withawat@eleceng.adelaide.edu.au
Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>