Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

19.05.2016

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing


New materials and technologies enable flexible and transparent displays.

Source: Joanneum Research

To enable mass production in advanced display technology, manufacturing must be cost-effective and simple. This can best be achieved through more adaptable and cheaper materials but solutions for some important key details had been lacking and conventional materials tend to be expensive or not versatile enough.

The new Fraunhofer ISC sol-gel materials and inorganic-organic hybrid polymers now allow just such a simple and cost-effective processing with wet-chemical printing or roll-to-roll processes. They also advance optical, mechanical and electrical properties to open up a whole new range of applications and design options for flexible, transparent or 3D displays.

Transparent and flexible touchscreens

Up to now, there was no technology to realize flexible and transparent touchscreens with corresponding electronics. Fraunhofer ISC now presents the adequate material, already put to use within the EU-funded “Flashed!” project: printed quasi-transparent polymer piezo-sensors.

These sensors register it all: deformation, e.g. when bending a display, pressure, e.g. applied by a fingertip, and, if demanded, changes in temperature. This is why they work equally well for large curved surfaces, for turn-over displays or the on-screen operation of a flexible tablet – none of which is possible with an indium-tin-oxide-based touchscreen display.

A simple screen printing process is all it takes to apply the sensor pastes onto PET films.

The application potential of Fraunhofer ISC’s novel flexible and transparent materials does not stop here. They are also suitable to realize passivation layers and insulators in circuit boards or conductive and semi-conductive layers.

As an alternative to expensive indium tin oxide (ITO) or further metal oxide semiconductors, such as IGZO, indium-free metal oxides could be applied by dip-coating, spraying or printing in a sol-gel process.

Better light yield

Fraunhofer ISC materials are equally beneficical as intermediate layers, e.g. in OLED lighting panels. While OLEDs can be produced at low cost and are economical in use, they nevertheless suffer from scatter loss of light owing to rough interfaces between conductive and protective layers.

The scattering action could be much better controlled with a smooth, high refractive index, sol-gel based layer incorporating scatter centers. Depending on the composition, the actual light output could be significantly increased to more than 50%. Other applications for better light management in displays are feasible.

3D displays

There is much room for improvement in 3D representation and virutal reality. To advance holographic »true-to-life« 3D representations, manufacturers look to new methods and materials. Fraunhofer ISC offers novel solutions for diffractive and holographic optical elements and 3D patterning by two-photon polymerization (2PP).

Direct laser writing with two-photon absorption (TPA) – the underlying process of 2PP – enables an almost arbitrary microstructuring of surfaces and is fast, cheap and simple in comparison to conventional 3D patterning methods. In 3D displays, porous layers for liquid crystals enable switchable optical elements of variable thickness. These are suitable techniques to further optimize true 3D representations.

Weitere Informationen:

http://www.isc.fraunhofer.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Further reports about: 3D 3D displays Fraunhofer-Institut ISC Silicatforschung indium tin oxide

More articles from Materials Sciences:

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>