Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

19.05.2016

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing


New materials and technologies enable flexible and transparent displays.

Source: Joanneum Research

To enable mass production in advanced display technology, manufacturing must be cost-effective and simple. This can best be achieved through more adaptable and cheaper materials but solutions for some important key details had been lacking and conventional materials tend to be expensive or not versatile enough.

The new Fraunhofer ISC sol-gel materials and inorganic-organic hybrid polymers now allow just such a simple and cost-effective processing with wet-chemical printing or roll-to-roll processes. They also advance optical, mechanical and electrical properties to open up a whole new range of applications and design options for flexible, transparent or 3D displays.

Transparent and flexible touchscreens

Up to now, there was no technology to realize flexible and transparent touchscreens with corresponding electronics. Fraunhofer ISC now presents the adequate material, already put to use within the EU-funded “Flashed!” project: printed quasi-transparent polymer piezo-sensors.

These sensors register it all: deformation, e.g. when bending a display, pressure, e.g. applied by a fingertip, and, if demanded, changes in temperature. This is why they work equally well for large curved surfaces, for turn-over displays or the on-screen operation of a flexible tablet – none of which is possible with an indium-tin-oxide-based touchscreen display.

A simple screen printing process is all it takes to apply the sensor pastes onto PET films.

The application potential of Fraunhofer ISC’s novel flexible and transparent materials does not stop here. They are also suitable to realize passivation layers and insulators in circuit boards or conductive and semi-conductive layers.

As an alternative to expensive indium tin oxide (ITO) or further metal oxide semiconductors, such as IGZO, indium-free metal oxides could be applied by dip-coating, spraying or printing in a sol-gel process.

Better light yield

Fraunhofer ISC materials are equally beneficical as intermediate layers, e.g. in OLED lighting panels. While OLEDs can be produced at low cost and are economical in use, they nevertheless suffer from scatter loss of light owing to rough interfaces between conductive and protective layers.

The scattering action could be much better controlled with a smooth, high refractive index, sol-gel based layer incorporating scatter centers. Depending on the composition, the actual light output could be significantly increased to more than 50%. Other applications for better light management in displays are feasible.

3D displays

There is much room for improvement in 3D representation and virutal reality. To advance holographic »true-to-life« 3D representations, manufacturers look to new methods and materials. Fraunhofer ISC offers novel solutions for diffractive and holographic optical elements and 3D patterning by two-photon polymerization (2PP).

Direct laser writing with two-photon absorption (TPA) – the underlying process of 2PP – enables an almost arbitrary microstructuring of surfaces and is fast, cheap and simple in comparison to conventional 3D patterning methods. In 3D displays, porous layers for liquid crystals enable switchable optical elements of variable thickness. These are suitable techniques to further optimize true 3D representations.

Weitere Informationen:

http://www.isc.fraunhofer.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Further reports about: 3D 3D displays Fraunhofer-Institut ISC Silicatforschung indium tin oxide

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>