Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transparent - Flexible - Printable: Key technologies for tomorrow’s displays


The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

New materials and technologies enable flexible and transparent displays.

Source: Joanneum Research

To enable mass production in advanced display technology, manufacturing must be cost-effective and simple. This can best be achieved through more adaptable and cheaper materials but solutions for some important key details had been lacking and conventional materials tend to be expensive or not versatile enough.

The new Fraunhofer ISC sol-gel materials and inorganic-organic hybrid polymers now allow just such a simple and cost-effective processing with wet-chemical printing or roll-to-roll processes. They also advance optical, mechanical and electrical properties to open up a whole new range of applications and design options for flexible, transparent or 3D displays.

Transparent and flexible touchscreens

Up to now, there was no technology to realize flexible and transparent touchscreens with corresponding electronics. Fraunhofer ISC now presents the adequate material, already put to use within the EU-funded “Flashed!” project: printed quasi-transparent polymer piezo-sensors.

These sensors register it all: deformation, e.g. when bending a display, pressure, e.g. applied by a fingertip, and, if demanded, changes in temperature. This is why they work equally well for large curved surfaces, for turn-over displays or the on-screen operation of a flexible tablet – none of which is possible with an indium-tin-oxide-based touchscreen display.

A simple screen printing process is all it takes to apply the sensor pastes onto PET films.

The application potential of Fraunhofer ISC’s novel flexible and transparent materials does not stop here. They are also suitable to realize passivation layers and insulators in circuit boards or conductive and semi-conductive layers.

As an alternative to expensive indium tin oxide (ITO) or further metal oxide semiconductors, such as IGZO, indium-free metal oxides could be applied by dip-coating, spraying or printing in a sol-gel process.

Better light yield

Fraunhofer ISC materials are equally beneficical as intermediate layers, e.g. in OLED lighting panels. While OLEDs can be produced at low cost and are economical in use, they nevertheless suffer from scatter loss of light owing to rough interfaces between conductive and protective layers.

The scattering action could be much better controlled with a smooth, high refractive index, sol-gel based layer incorporating scatter centers. Depending on the composition, the actual light output could be significantly increased to more than 50%. Other applications for better light management in displays are feasible.

3D displays

There is much room for improvement in 3D representation and virutal reality. To advance holographic »true-to-life« 3D representations, manufacturers look to new methods and materials. Fraunhofer ISC offers novel solutions for diffractive and holographic optical elements and 3D patterning by two-photon polymerization (2PP).

Direct laser writing with two-photon absorption (TPA) – the underlying process of 2PP – enables an almost arbitrary microstructuring of surfaces and is fast, cheap and simple in comparison to conventional 3D patterning methods. In 3D displays, porous layers for liquid crystals enable switchable optical elements of variable thickness. These are suitable techniques to further optimize true 3D representations.

Weitere Informationen:

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Further reports about: 3D 3D displays Fraunhofer-Institut ISC Silicatforschung indium tin oxide

More articles from Materials Sciences:

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>