Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transformation optics make a U-turn for the better

07.07.2010
Powerful new microscopes able to resolve DNA molecules with visible light, superfast computers that use light rather than electronic signals to process information, and Harry Potteresque invisibility cloaks are just some of the many thrilling promises of transformation optics.

In this burgeoning field of science, light waves can be controlled at all lengths of scale through the unique structuring of metamaterials, composites typically made from metals and dielectrics – insulators that become polarized in the presence of an electromagnetic field. The idea is to transform the physical space through which light travels, sometimes referred to as “optical space,” in a manner similar to the way in which outer space is transformed by the presence of a massive object under Einstein’s relativity theory.

Schematic on the left shows the scattering of surface plasmon polaritons (SPPs) on a metal-dielectric interface with a single protrusion. Schematic on right shows how SPP scattering is dramatically suppressed when the optical space around the protrusion is transformed. (Image courtesy of Zhang group)

So far transformation optics have delivered only hints as to what the future might hold, with a major roadblock being how difficult it is to modify the physical properties of metamaterials at the nano or subwavelength scale, mainly because of the metals. Now, a team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have shown it might be possible to go around that metal roadblock. Using sophisticated computer simulations, they have demonstrated that with only moderate modifications of the dielectric component of a metamaterial, it should be possible to achieve practical transformation optics results. The key to success is the combination of transformation optics with another promising new field of science known as plasmonics.

A plasmon is an electronic surface wave that rolls through the sea of conduction electrons on a metal. Just as the energy in waves of light is carried in quantized particle-like units called photons, so, too, is plasmonic energy carried in quasi-particles called plasmons. Plasmons will interact strongly with photons at the interface of a metamaterial’s metal and dielectric to form yet another quasi-particle called a surface plasmon polariton(SPP). Manipulation of these SPPs is at the heart of the astonishing optical properties of metamaterials.

The Berkeley Lab-UC Berkeley team, led by Xiang Zhang, a principal investigator with Berkeley Lab’s Materials Sciences Division and director of UC Berkeley’s Nano-scale Science and Engineering Center (SINAM), modeled what they have dubbed a “transformational plasmon optics” approach that involved manipulation of the dielectric material adjacent to a metal but not the metal itself. This novel approach was shown to make it possible for SPPs to travel across uneven and curved surfaces over a broad range of wavelengths without suffering significant scattering losses. Using this model, Zhang and his team then designed a plasmonic waveguide with a 180 degree bend that won’t alter the energy or properties of a light beam as it makes the U-turn. They also designed a plasmonic version of a Luneburg lens, the ball-shaped lenses that can receive and resolve optical waves from multiple directions at once.

“Since the metal properties in our metamaterials are completely unaltered, our transformational plasmon optics methodology provides a practical way for routing light at very small scales,” Zhang says. “Our findings reveal the power of the transformation optics technique to manipulate near-field optical waves, and we expect that many other intriguing plasmonic devices will be realized based on the methodology we have introduced.”

Zhang is the corresponding author of a paper describing this research that appeared in the journal Nano Letters, titled “Transformational Plasmon Optics.” Co-authoring the paper with Zhang were Yongmin Liu, Thomas Zentgraf and Guy Bartal.

Says Liu, who was the lead author of the paper and is a post-doctoral researcher in Zhang’s UC Berkeley group, “In addition to the 180 degree plasmonic bend and the plasmonic Luneburg lens, our approach should also enable the design and production of beam splitters and shifters, and directional light emitters. The technique should also be applicable to the construction of integrated, compact optical data-processing chips.”

Zhang and his research group have been at the forefront of transformation optics research since 2008 when they became the first group to fashion metamaterials that were able to bend light backwards, a property known as “negative refraction,” which is unprecedented in nature. In 2009, he and his group created a “carpet cloak” from nanostructured silicon that concealed the presence of objects placed under it from optical detection.

For this latest work, Zhang and Liu with Zentgraf and Bartal departed from the traditional transformation optics focus on propagation waves and instead focused on the SPPs carried in near-field (subwavelength) region.

“The intensity of SPPs is maximal at the interface between a metal and a dielectric medium and exponentially decays away from the interface,” says Zhang. “Since a significant portion of SPP energy is carried in the evanescent field outside the metal, that is, in the adjacent dielectric medium, we proposed to control SPPs by keeping the metal property fixed and only modifying the dielectric material based on the transformation optics technique.”

Full-wave simulations of different transformed designs proved the proposed methodology by Zhang and his colleagues correct. It was furthermore demonstrated that if a prudent transformational plasmon optics scheme is taken the transformed dielectric materials can be isotropic and nonmagnetic, which further boosts the practicality of this approach. The demonstration of a 180 degree bend plasmonic bend with almost perfect transmission was especially significant.

“Plasmonic waveguides are one of the most important components/elements in integrated plasmonic devices,” says Liu. “However, curvatures often lead to strong radiation loss that reduces the length for transferring an optical signal. Our 180 degree bend plasmonic bend is definitely important and will be useful in the future design of integrated plasmonic devices.”

Compared with silicon-based photonic devices the use of plasmonics could help to further scale- down the total size of photonic devices and increase the interaction of light with certain materials, which should improve performance.

“We envision that the unique design flexibility of the transformational plasmon optics approach may open a new door to nano optics and photonic circuit design,” Zhang says.

This research was supported by the U.S. Army Research Office and the National Science Foundation’s Nano-scale Science and Engineering Center.

Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the DOE Office of Science. Visit our Website at http://www.lbl.gov.

Additional Information

For more information about the research of Xiang Zhang visit http://xlab.me.berkeley.edu/xlabnews.htm

For more information about the Berkeley Nano-scale Science and Engineering Center visit http://www.nanowerk.com/nanotechnology/labs/UC_Berkeley_NSF_Nanoscale_Science_and_Engineering_Center_%28SINAM%29.html

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>