Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toothsome Research: Deducing the Diet of a Prehistoric Hominid

12.02.2009
In an unusual intersection of materials science and anthropology, researchers from the National Institute of Standards and Technology (NIST) and The George Washington University (GWU) have applied materials-science-based mathematical models to help shed light on the dietary habits of some of mankind’s prehistoric relatives.

Their work forms part of a newly published, multidisciplinary analysis* of the early hominid Australopithecus africanus by anthropologists at the State University of New York at Albany and elsewhere.

In the new study, Albany researcher David Strait and his colleagues** applied finite element analysis—an engineer’s modeling tool that employs an intricate geometric mesh to calculate the stresses and strains at play in complex shapes—to the teeth and jaws of A. africanus, an African hominid that lived 2 to 3 million years ago. Their goal was to determine just how, and with how much force, the animal chomped and chewed its food.

Such analyses are of great importance to anthropologists. Teeth are the hardest parts of the body, and so are the parts most likely to be found after millions of years. Careful examination of subtle features of teeth and jaws can reveal what an animal could eat, which implies what it did eat, which implies a host of things about its environment, habits and survival strategies.

A. africanus presented a puzzle. Classical analysis of the skull—large molars and premolars with thick enamel, thick heavy jawbones, strong chewing muscles as evidenced by their anchor points on the bone—pointed to a diet of small, hard seeds. The finite-element analysis threw a spanner in the works. It suggested that A. africanus’s facial and jaw anatomy was optimized to handle stress on the premolars, teeth located farther forward in the mouth and most useful for chewing larger hard objects. But recent studies had shown that the teeth lacked the microscopic wear patterns characteristic of chewing hard objects, a contradiction.

Here, work by NIST researcher Brian Lawn and a group at GWU headed by Peter Lucas came in handy. Driven by an interest in tooth restoration materials, they had been studying teeth using fracture mechanics, a field that considers how materials fail under excessive loads. “Our analytical approach produces equations that predict how each mode of damage will occur under different conditions and this enables us to determine trends for different tooth sizes, different food sizes, different food hardness and so on,” explained Lawn. “What they show is that, under some conditions, teeth will actually fracture before they wear.” This explained the absence of microwear patterns in the teeth, which would normally not be used for chewing small hard seeds. “A lot of people have thought the most important part of the survival of the tooth is wear, but it’s now becoming evident that the fracture properties are also very important because there’s a limit to the force that you can apply. Wear is important, but when you start to bite on harder, larger objects, fracture becomes more important,” Lawn said.

“This is a neat example of how really basic materials science—fracture mechanics—has important implications for biological sciences and anthropology,” Strait observed. In the bigger picture, said Strait, the new understanding about A. africanus’s diet may help to explain its successful adaptation to changing climates. A large hard nut that had to be cracked with the premolars may not have been a preferred meal, but it could be something to fall back on when other foods were scarce.

Read more about the study in the SUNY Albany news release, “Early Humans Were Nuts About Seeds.”

* D.S. Strait, G.W. Weber, S. Neubauer, J. Chalk, B.G. Richmond, P.W. Lucas, M.A. Spencer, C. Schrein, P.C. Dechow, C.F. Ross, I.R. Grosse, B.W. Wright, P. Constantino, B.A. Wood, B. Lawn, Q. Wang, D.E. Slice, C. Byron and A.L. Smith. The feeding biomechanics and dietary ecology of Australopithecus africanus. Proceedings of the National Academy of Sciences. Published online Feb. 2, 2009, doi:10.1073/pnas.0808730106

** Contributors to the complex effort included researchers from the State University of New York at Albany, the University of Vienna, the Max-Planck-Institute for Evolutionary Anthropology, the Smithsonian Institution, Arizona State University, Baylor College of Dentistry, the University of Chicago, the University of Massachusetts, the Kansas City University of Medicine and Biosciences, the Mercer University School of Medicine and Mercer University as well as NIST and The George Washington University.

Michael Baum | Newswise Science News
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>