Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tires made from trees -- better, cheaper, more fuel efficient

23.07.2009
Automobile owners around the world may some day soon be driving on tires that are partly made out of trees – which could cost less, perform better and save on fuel and energy.

Wood science researchers at Oregon State University have made some surprising findings about the potential of microcrystalline cellulose – a product that can be made easily from almost any type of plant fibers – to partially replace silica as a reinforcing filler in the manufacture of rubber tires.

A new study suggests that this approach might decrease the energy required to produce the tire, reduce costs, and better resist heat buildup. Early tests indicate that such products would have comparable traction on cold or wet pavement, be just as strong, and provide even higher fuel efficiency than traditional tires in hot weather.

"We were surprised at how favorable the results were for the use of this material," said Kaichang Li, an associate professor of wood science and engineering in the OSU College of Forestry, who conducted this research with graduate student Wen Bai.

"This could lead to a new generation of automotive tire technology, one of the first fundamental changes to come around in a long time," Li said.

Cellulose fiber has been used for some time as reinforcement in some types of rubber and automotive products, such as belts, hoses and insulation – but never in tires, where the preferred fillers are carbon black and silica. Carbon black, however, is made from increasingly expensive oil, and the processing of silica is energy-intensive. Both products are very dense and reduce the fuel efficiency of automobiles.

In the search for new types of reinforcing fillers that are inexpensive, easily available, light and renewable, OSU experts turned to microcrystalline cellulose – a micrometer-sized type of crystalline cellulose with an extremely well-organized structure. It is produced in a low-cost process of acid hydrolysis using nature's most abundant and sustainable natural polymer – cellulose – that comprises about 40-50 percent of wood.

In this study, OSU researchers replaced up to about 12 percent of the silica used in conventional tire manufacture. This decreased the amount of energy needed to compound the rubber composite, improved the heat resistance of the product, and retained tensile strength.

Traction is always a key issue with tire performance, and the study showed that the traction of the new product was comparable to existing rubber tire technology in a wet, rainy environment. However, at high temperatures such as in summer, the partial replacement of silica decreased the rolling resistance of the product, which would improve fuel efficiency of rubber tires made with the new approach.

More research is needed to confirm the long-term durability of tires made with partial replacement of silica, Li said. Further commercial development of this technology by a tire manufacturer could be undertaken at any time, he said. The newest findings were just published in a professional journal, Composites Part A: Applied Science and Manufacturing.

Tire manufacturing, a huge industry, could also provide another market for large amounts of Pacific Northwest natural fibers and the jobs and technology needed to process them

This advance is another in a series of significant discoveries in Li's research program at OSU in recent years. He developed a non-toxic adhesive for production of wood composite panels that has dramatically changed that industry, and in 2007 received a Presidential Green Chemistry Challenge Award at the National Academy of Sciences for his work on new, sustainable and environmentally friendly wood products.

Kaichang Li | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>