Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin, Flexible Glass for Energy Storage

24.07.2013
A new use for glass is being developed by researchers in Penn State’s Materials Research Institute that could make future hybrid-electric and plug-in electric vehicles more affordable and reliable.

Thin and flexible glass for displays is already a widely commercialized technology. But even thinner glass, about one tenth the thickness of display glass, can be customized to store energy at high temperatures and for high power applications, such as electric vehicle power electronics, wind turbine generators, grid-tied photovoltaics, aerospace, and geothermal exploration and drilling.


Walt Mills, Materials Research Institute, Penn State

Postdoctoral researcher Mohan Manoharan unspools a ribbon of 10-micron-thick flexible glass used to store energy

In a recent paper in the new journal Energy Technology, postdoctoral researcher and lead author Mohan Manoharan and colleagues report on experiments with various alkali-free glass compositions and thicknesses, comparing their energy density and power density to commercial polymer capacitors currently used in electric vehicles to convert energy from the battery to the electric motor.

Because polymer capacitors are designed to operate at lower temperatures, they require a separate cooling system and a larger safety factor, which adds to their bulk. In his research, Manoharan identified 10-micron thick glass from Nippon Electric Glass (NEG) as having an ideal combination of high energy density and power density, with high charge-discharge efficiency at temperatures up to 180 °C and, in more recent experiments, even higher.

Partnering with NEG leverages the investment of leading glass manufacturers in developing the processes to create continuous sheets of glass with less thickness and fewer defects. Working with State College-based Strategic Polymer Sciences, the researchers are developing the capability to produce inexpensive roll-to-roll glass capacitors with high energy density (35 J/cc3) and high reliability.

In work funded by the Department of Energy, Manoharan and the Penn State team led by Michael Lanagan, professor of engineering science and mechanics, are collaborating with Strategic Polymer Sciences to coat the glass with high temperature polymers that increase energy density by 2.25 times compared to untreated glass, and also significantly increase self-healing capabilities. Self-healing or graceful failure is an important consideration in applications where reliability is a critical factor.

“These flexible glass capacitors will reduce weight and cost if replacing polypropylene capacitors,” Manoharan said. “They could be used in any high energy density capacitor application – not only in electric vehicles, but in heart defibrillators or weapons systems such as the electric railgun the navy is developing.”

Co-authors on the article, “Flexible Glass for High Temperature Energy Storage Capacitors,” are Chen Zou, Nanyan Zhang, Douglas Kushner, and Shihai Zhang, all of Strategic Polymer Sciences, Takashi Murata of Nippon Electric Glass, and Mohan Manoharan, Eugene Furman, and Michael Lanagan of the Materials Research Institute at Penn State. Contact Dr. Lanagan at mxl46@psu.edu for more information.

The Materials Research Institute coordinates the interdisciplinary research of over 200 faculty scientists and engineers at Penn State. For more information, visit us at www.mri.psu.edu.

Dr. Lanagan | Newswise
Further information:
http://www.mri.psu.edu
http://www.psu.edu

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>