Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taming carbon nanotubes

07.02.2011
Carbon nanotubes have many attractive properties, and their structure and areas of application can be compared with those of graphene, the material for whose discovery the most recent Nobel Prize was awarded. In order to be able to exploit these properties, however, it is necessary to have full control of the manufacturing process. Scientists at the University of Gothenburg are closing in on the answer.

“Our results show that the metal particles that form the basis of the manufacture of carbon nanotubes must have a certain minimum size, in order for growth to start and to continue. It is also probable that the particles are in liquid form at a manufacturing temperature of around 800 °C, even though the metals used may have much higher melting points”, says Anders Börjesson from the Department of Physics at the University of Gothenburg.

The scientists have used various computer models to study in detail properties that are difficult or impossible to examine in experimental conditions. Only when we fully understand the manufacturing process will we be able to exploit this material fully.

The diameter of the nanotubes is of the order of one billionth of a metre, and they can be as thin as a single carbon layer. The length of the tubes, in contrast, can extend from the nanometre scale up to several decimetres. Carbon nanotubes can be regarded, quite simply, as thin threads of pure carbon, whose length can be a billion times greater than their thickness.

Interest for nanotubes is based on their outstanding properties: they are among the strongest materials known and have extremely high conductivity for both electric current and heat.

The strength can be used to reinforce other materials, just as the strength of glass and carbon fibres is used in plastics, and steel reinforcement is used in concrete. Carbon nanotubes, however, would enable plastics to be manufactured that are ten times stronger than the strongest materials available today. Such materials could be used not only in exclusive sports equipment but also in the construction of buildings that appear to come from science fiction: a lift between the Earth and space could be anchored using a material based on nanotubes.

The carbon nanotubes may also replace other material when it comes to conducting very high electrical currents, since they do not become hot, nor do they catch fire. Certain nanotubes have semiconducting properties and could be used to build nanoelectronic circuits, giving much smaller and faster processors to be used in computers.

One way of combining the strength and electrical properties of the carbon nanotubes would be to mix them with polymer material, and by weaving threads that also contain electronic circuits. It would be possible, for example, to weave instruments for monitoring heart function directly into clothes.

The thesis In Silco Studies of Carbon Nanotubes and Metal Clusters (Beräkningsstudier av kolnanorör och metallkluster)has been successfully defended. Supervisor: Professor Kim Bolton. The research has been a collaboration between the University of Gothenburg and the University of Borås.

Contact:
Anders Börjesson, Department of Physics, University of Gothenburg
+46(0)31 786 9143
+46(0)70 240 1145
anders.borjesson@physics.gu.se

Helena Aaberg | idw
Further information:
http://bada.hb.se/handle/2320/6908
http://www.gu.se

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>