Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taming carbon nanotubes

07.02.2011
Carbon nanotubes have many attractive properties, and their structure and areas of application can be compared with those of graphene, the material for whose discovery the most recent Nobel Prize was awarded. In order to be able to exploit these properties, however, it is necessary to have full control of the manufacturing process. Scientists at the University of Gothenburg are closing in on the answer.

“Our results show that the metal particles that form the basis of the manufacture of carbon nanotubes must have a certain minimum size, in order for growth to start and to continue. It is also probable that the particles are in liquid form at a manufacturing temperature of around 800 °C, even though the metals used may have much higher melting points”, says Anders Börjesson from the Department of Physics at the University of Gothenburg.

The scientists have used various computer models to study in detail properties that are difficult or impossible to examine in experimental conditions. Only when we fully understand the manufacturing process will we be able to exploit this material fully.

The diameter of the nanotubes is of the order of one billionth of a metre, and they can be as thin as a single carbon layer. The length of the tubes, in contrast, can extend from the nanometre scale up to several decimetres. Carbon nanotubes can be regarded, quite simply, as thin threads of pure carbon, whose length can be a billion times greater than their thickness.

Interest for nanotubes is based on their outstanding properties: they are among the strongest materials known and have extremely high conductivity for both electric current and heat.

The strength can be used to reinforce other materials, just as the strength of glass and carbon fibres is used in plastics, and steel reinforcement is used in concrete. Carbon nanotubes, however, would enable plastics to be manufactured that are ten times stronger than the strongest materials available today. Such materials could be used not only in exclusive sports equipment but also in the construction of buildings that appear to come from science fiction: a lift between the Earth and space could be anchored using a material based on nanotubes.

The carbon nanotubes may also replace other material when it comes to conducting very high electrical currents, since they do not become hot, nor do they catch fire. Certain nanotubes have semiconducting properties and could be used to build nanoelectronic circuits, giving much smaller and faster processors to be used in computers.

One way of combining the strength and electrical properties of the carbon nanotubes would be to mix them with polymer material, and by weaving threads that also contain electronic circuits. It would be possible, for example, to weave instruments for monitoring heart function directly into clothes.

The thesis In Silco Studies of Carbon Nanotubes and Metal Clusters (Beräkningsstudier av kolnanorör och metallkluster)has been successfully defended. Supervisor: Professor Kim Bolton. The research has been a collaboration between the University of Gothenburg and the University of Borås.

Contact:
Anders Börjesson, Department of Physics, University of Gothenburg
+46(0)31 786 9143
+46(0)70 240 1145
anders.borjesson@physics.gu.se

Helena Aaberg | idw
Further information:
http://bada.hb.se/handle/2320/6908
http://www.gu.se

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>