Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking self-assembly to the limits

04.12.2014

Confining tiny gold colloids inside nanoscale templates reveals how to design complex structures beyond the capabilities of conventional lithography

Gold nanoparticles smaller than 10 nanometers spontaneously self-organize in entirely new ways when trapped inside channel-like templates. A new study shows that this feature could facilitate easier nanoscale manufacturing of biosensors and plasmonic devices with intricate, high-density surface structures[1].


Researchers identify new ways of patterning gold nanoparticles with sub-10-nanometer resolution based on ‘structure transitions’ that occur when ordered states break down.

© Sergey Ilin/istock/Thinkstock

Generating surface patterns at scales of 10 nanometers and below is difficult with current technology. An international team, led by Joel Yang from the A*STAR Institute of Materials Research and Engineering in Singapore, is helping to circumvent this limitation using a technique known as ‘directed self-assembly of nanoparticles’ (DSA-n).

This approach takes spherical nanoparticles that spontaneously organize into ordered, two-dimensional films when inserted into lithographically defined templates. The templates impose geometric constraints that force the films to organize into specific nanoscale patterns.

Most patterns produced by DSA-n, however, are simple periodic arrangements. To broaden this technique’s capabilities, researchers are exploring ‘structure transitions’ that occur when template constraints become comparable to the size of the nanoparticles. At these dimensions, the small spheres can dislocate from typical periodic positions and reorient into unpredictable new geometries.

Previous studies have used real-time video microscopy to capture structure transitions in microscale colloids, but direct imaging of sub-10-nanometer particles is nearly impossible. “That’s where we came up with the idea of using templates based on channels with gradually varying widths,” says co-author Mohamed Asbahi. “With this system, we can track the self-assembly of the nanoparticles according to the space accessible to them.”

Using electron-beam lithography techniques, the team carved out an array of inward tapering trenches designed to fit 1 to 3 rows of gold nanoparticles. After depositing a monolayer of 8-nanometer particles in the template, they used scanning electron microscopy to identify any emergent width-dependent patterns. Between periodically ordered rows, the researchers saw clear evidence of transition state zones — regions where the tiny spheres buckle out of alignment and gradually take on new, triangular packing patterns.

After analyzing the transition states with computational Monte Carlo simulations, Yang and co-workers identified several dominant recurrent patterns with different geometries from typical DSA-n depositions. Because the conditions needed to generate these patterns can be predicted mathematically, the team is confident these findings can have practical surface engineering applications.

“The success of DSA-n depends on the positioning accuracy of the particles,” says Yang. “By exploiting the rich set of structural geometries that exist between ordered states, we can design templates that guide particles into complex periodic and nonperiodic structures.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Reference:
[1] Asbahi, M., Mehraeen, S., Lim, K. T. P, Wang, F., Cao, J., Tan, M. C. & Yang, J. K. W. Template-induced structure transition in sub-10 nm self-assembling nanoparticles. Nano Letters 14, 2642–2646 (2014). 

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7106
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>