Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Taking self-assembly to the limits


Confining tiny gold colloids inside nanoscale templates reveals how to design complex structures beyond the capabilities of conventional lithography

Gold nanoparticles smaller than 10 nanometers spontaneously self-organize in entirely new ways when trapped inside channel-like templates. A new study shows that this feature could facilitate easier nanoscale manufacturing of biosensors and plasmonic devices with intricate, high-density surface structures[1].

Researchers identify new ways of patterning gold nanoparticles with sub-10-nanometer resolution based on ‘structure transitions’ that occur when ordered states break down.

© Sergey Ilin/istock/Thinkstock

Generating surface patterns at scales of 10 nanometers and below is difficult with current technology. An international team, led by Joel Yang from the A*STAR Institute of Materials Research and Engineering in Singapore, is helping to circumvent this limitation using a technique known as ‘directed self-assembly of nanoparticles’ (DSA-n).

This approach takes spherical nanoparticles that spontaneously organize into ordered, two-dimensional films when inserted into lithographically defined templates. The templates impose geometric constraints that force the films to organize into specific nanoscale patterns.

Most patterns produced by DSA-n, however, are simple periodic arrangements. To broaden this technique’s capabilities, researchers are exploring ‘structure transitions’ that occur when template constraints become comparable to the size of the nanoparticles. At these dimensions, the small spheres can dislocate from typical periodic positions and reorient into unpredictable new geometries.

Previous studies have used real-time video microscopy to capture structure transitions in microscale colloids, but direct imaging of sub-10-nanometer particles is nearly impossible. “That’s where we came up with the idea of using templates based on channels with gradually varying widths,” says co-author Mohamed Asbahi. “With this system, we can track the self-assembly of the nanoparticles according to the space accessible to them.”

Using electron-beam lithography techniques, the team carved out an array of inward tapering trenches designed to fit 1 to 3 rows of gold nanoparticles. After depositing a monolayer of 8-nanometer particles in the template, they used scanning electron microscopy to identify any emergent width-dependent patterns. Between periodically ordered rows, the researchers saw clear evidence of transition state zones — regions where the tiny spheres buckle out of alignment and gradually take on new, triangular packing patterns.

After analyzing the transition states with computational Monte Carlo simulations, Yang and co-workers identified several dominant recurrent patterns with different geometries from typical DSA-n depositions. Because the conditions needed to generate these patterns can be predicted mathematically, the team is confident these findings can have practical surface engineering applications.

“The success of DSA-n depends on the positioning accuracy of the particles,” says Yang. “By exploiting the rich set of structural geometries that exist between ordered states, we can design templates that guide particles into complex periodic and nonperiodic structures.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

[1] Asbahi, M., Mehraeen, S., Lim, K. T. P, Wang, F., Cao, J., Tan, M. C. & Yang, J. K. W. Template-induced structure transition in sub-10 nm self-assembling nanoparticles. Nano Letters 14, 2642–2646 (2014). 

A*STAR Research | ResearchSEA
Further information:

More articles from Materials Sciences:

nachricht Custom sequences for polymers using visible light
22.03.2018 | Tokyo Metropolitan University

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>