Sweet chemistry: Carbohydrate adhesion gives stainless steel implants beneficial new functions

Implanted biomedical devices, such as cardiac stents, are implanted in over 2 million people every year, with the majority made from stainless steel. Stainless steel has many benefits – strength, generally stability, and the ability to maintain the required shape long after it has been implanted. But, it can also cause severe problems, including blood clotting if implanted in an artery, or an allergenic response due to release of metal ions such as nickel ions.

The University of Alberta campus is home to a highly multidisciplinary group of researchers, the CIHR Team in for Glyconanotechnology in Transplantation, that is looking to develop new synthetic nanomaterials that modify the body's immune response before an organ transplant. The ultimate goal is to allow cross-blood type organ transplants, meaning that blood types would not necessarily need to be matched between donor and recipient when an organ becomes available for transplantation. Developing new nanomaterials that engage and interact with the body's immune system are an important step in the process. In order to overcome the complex range of requirements and issues, the project team drew on expertise from three major areas: surface science chemistry and engineering, carbohydrate chemistry, and immunology and medicine.

For the transplantation goals of the project, sophisticated carbohydrate (sugar) molecules needed to be attached to the stainless steel surface to bring about the necessary interaction with the body's immune system. Its inherent stainless characteristic makes stainless steel a difficult material to augment with new functions, particularly with the controlled and close-to-perfect coverage needed for biomedical implants. The Edmonton-based team found that by first coating the surface of the stainless steel with a very thin layer (60 atoms deep) of glass silica using a technique available at the National Institute for Nanotechnology, called Atomic Layer Deposition (ALD), they could overcome the inherent non-reactivity of the stainless steel. The silica provide a well-defined “chemical handle” through which the carbohydrate molecules, prepared in the Alberta Ingenuity Centre for Carbohydrate Science, could be attached. Once the stainless steel had been controlled, the researchers demonstrated that the carbohydrate molecules covered the stainless steel in a highly controlled way, and in the correct orientation to interact with the immune system.

“We are immensely pleased with this progress. We have every expectation that this set of steps creating novel tools for immune system engagement will lead us closer to clinical application aimed at preparing patients for successful organ transplants.” stated Dr. Lori West, Professor of Pediatrics, Surgery and Immunology, and Director of Heart Transplant Research at Univ. of Alberta.

Media Contact

Dr. Jillian Buriak EurekAlert!

More Information:

http://www.ualberta.ca

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors