Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprise at the nanoscale: Silicon atoms jump after contact with metal

28.10.2015

Max Planck researchers from Stuttgart reveal unknown behaviour of semi-conductors at the nanoscale

Silicon is presently the most proper ingredient for microelectronic devices: it serves as basic material for all current computer chips. According to the increasing importance of electronic set-ups, the term “Silicon Age” is widely-used nowadays.


Semiconductor atoms (as silicon and germanium atoms) get influenced by metal (as aluminium) at the nanoscale and change their position through atomic jumps, even at temperatures as low as -190 degree celsius.

© Dr. Zumin Wang, MPI-IS Stuttgart

Further, the nickname Silicon Valley, representing the high-tech region in California, indi-cates the enormous importance of silicon for the semi-conductor and computer industry.

Crystalline silicon has also been widely used for the production of TFT-flatscreens and is, furthermore, a fundamental basic material for the assembling of photovoltaic cells.

A further semiconductor is germanium, which initially was the leading material in (micro) electronics, until it was replaced by silicon. Only few years ago, researchers discovered that monolayers of germanium conduct electrons up to 10 times faster than silicon. For this reason, germanium could catch up as semi-conductor again.

Silicon and germanium are both quite heat resistant and melt only at temperatures higher than 900 degree Celsius. At the solid state, the atoms are positioned within a regularly or-dered crystal lattice and can only vibrate slightly at their respective locations. With increas-ing temperature, the vibrations intensify and even “jumps“ to different sites in the solid occur. At room temperature these kind of atomic jumps are practically impossible.

Scientists led by Prof. Dr. Ir. Eric Jan Mittemeijer, Director at the Max Planck Institute for Intelligent Systems in Stuttgart, have recently discovered that atomic jumps occur in silicon and germanium even at very low temperature of minus 190 degree Celsius, if the thin layer of only 1 nanometer (millionth millimeter) gets in contact with metal, e.g. alu-minium.

The researcher Dr. Zumin Wang reports: „We tried to prepare artificial sandwiches com-posed of a very thin, 1-nm silicon or germanium film between two aluminium layers at minus 190 degree celsius. During this process we figured out that germanium or silicon always moved to the top surface of the aluminium. It was not possible to prepare such sandwiches. First, we found this “behavior” quite annoying, but soon we recognized that we had made a very surprising observation.”

While using X-ray photoelectron spectroscopy, the scientists found out that the bonding characteristics within germanium- and silicon atoms become strongly influenced when they get in touch with metals at thin-film set-ups. As a consequence, the semi-conductor atoms become able to “jump” more frequently. Because of these jumps, the atoms get mobile and change their position: they jump to the top surface of the aluminium. The metal influ-ences this mobility and has to be as close as half a nanometer.

Dr. Wang states: “This observation could become even more important since assembly parts for computers made of semi-conductor material shrink increasingly. Currently they are already as small as 10 to 40 nanometer, which means that at slightly smaller scale, mixing effects due to atomic jumps may arise. Secondly, the discovered process has impact on the preparation of thin film systems involving heat-sensitive materials, since the semi-conductor can become mobile even at very low temperature.”

Weitere Informationen:

http://www.is.mpg.de/mittemeijer

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>