Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface science goes inorganic

17.02.2010
Powerful concept offers new approach to understanding surfaces of materials

A collaboration between researchers at Northwestern University's Center for Catalysis and scientists at Oxford University has produced a new approach for understanding surfaces, particularly metal oxide surfaces, widely used in industry as supports for catalysts.

This knowledge of the surface layer of atoms is critical to understanding a material's overall properties. The findings were published online Feb. 14 by the journal Nature Materials.

Using a combination of advanced experimental tools coupled with theoretical calculations, the research team has shown how, using methods commonly taught to undergraduate chemistry students, one can understand how atoms are arranged on a material's surface. (These methods date back to the pioneering work of Linus Pauling and others to understand the chemical bond.)

"For a long time we have not understood oxide surfaces," said Laurence Marks, professor of materials science and engineering in the McCormick School of Engineering and Applied Science at Northwestern. "We only have had relatively simple models constructed from crystal planes of the bulk structure, and these have not enabled us to predict where the atoms should be on a surface.

"Now we have something that seems to work," Marks said. "It's the bond-valence-sum method, which has been used for many years to understand bulk materials. The way to understand oxide surfaces turns out to be to look at the bonding patterns and how the atoms are arranged and then to follow this method."

Marks, together with Kenneth Poeppelmeier, professor of chemistry in Northwestern's Weinberg College of Arts and Sciences, and Martin Castell, university lecturer in the department of materials at Oxford, led the research.

In the study, Northwestern graduate student James Enterkin analyzed electron diffraction patterns from a strontium titanate surface to work out the atomic structure. He combined the patterns with scanning-tunnelling microscopy images obtained by Bruce Russell at Oxford. Enterkin then combined them with density functional calculations and bond-valence sums, showing that those that had bonding similar to that found in bulk oxides were those with the lowest energy.

Writing in a "News and Views" article from the same issue of Nature Materials, Ulrike Diebold from the Institute of Applied Physics in Vienna, Austria, said, "This simple and intuitive, yet powerful concept [the bond-valence-sum method] is widely used to analyze and predict structures in inorganic chemistry. Its successful description of the surface reconstruction of SrTiO3 (110) shows that this approach could be relevant for similar phenomena in other materials."

The Nature Materials paper is titled "A homologous series of structures on the surface of SrTiO3 (110)." The authors of the paper are James A. Enterkin (first author), Arun K. Subramanian, Kenneth R. Poeppelmeier and Laurence D. Marks, from Northwestern, and Bruce C. Russell and Martin R. Castell, from Oxford.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>