Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface matters: Huge reduction of heat conduction observed in flat silicon channels

29.04.2015

The ability of materials to conduct heat is a concept that we are all familiar with from everyday life. The modern story of thermal transport dates back to 1822 when the French physicist Jean-Baptiste Joseph Fourier published his book “Théorie analytique de la chaleur” (The Analytic Theory of Heat), which became a cornerstone of heat transport. He pointed out that the thermal conductivity, i.e., ratio of the heat flux to the temperature gradient is an intrinsic property of the material itself.

The advent of nanotechnology, where the rules of classical physics gradually fail as the dimensions shrink, is challenging Fourier's theory of heat in several ways.

A paper published in ACS Nano and written by researchers from the Max Planck Institute for Polymer Research (Germany), the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain) and the VTT Technical Research Centre of Finland (Finland) in the framework of the project MERGING (Membrane-based phonon engineering for energy harvesting) describes how the nanometer-scale topology and the chemical composition of the surface control the thermal conductivity of ultrathin silicon membranes.

The results show that the thermal conductivity of silicon membranes thinner than 10 nm is 25 times lower than that of bulk crystalline silicon and is controlled to a large extent by the structure and the chemical composition of their surface.

Combining state-of-the-art realistic atomistic modeling, sophisticated fabrication techniques, new measurement approaches and the latest parameter-free modeling, researchers unraveled the role of surface oxidation in determining the scattering of phonons (quantized lattice vibrations), which are the main heat carriers in silicon.

Both experiments and modeling showed that removing the native oxide improves the thermal conductivity of silicon nanostructures by almost a factor of two, while successive partial re-oxidation lowers it again.

Large-scale molecular dynamics simulations with up to 1,000,000 atoms allowed the researchers to quantify the relative contributions to the reduction of the thermal conductivity arising from the presence of native SiO2 and from the dimensionality reduction evaluated for a model with perfectly specular surfaces.

Silicon is the material of choice for almost all electronic-related applications, where characteristic dimensions below 10 nm have been reached, e.g. in the newest FET transistors, and heat dissipation control becomes essential for their optimum performance.

“The chemical nature of surfaces, therefore, emerges as a new key parameter for improving the performance of Si-based electronic and thermoelectric nanodevices”, says Dr. Davide Donadio. As a result, this work opens new possibilities for novel thermal experiments and designs directed to manipulate heat at the nanoscales.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/Surface_matters_Donadio - Press release and original publication
http://www.mpip-mainz.mpg.de/theory_nanostructures - Information about Dr. Donadio and his research
http://www.mpip-mainz.mpg.de/home/en - Max Planck Institute for Polymer Research

Natacha Bouvier | Max-Planck-Institut für Polymerforschung

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>