Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recommend this page:
To (Recipient's email address)
Your name (Optional)
From (Your email address)
Message (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

Supersonic Spray Delivers High Quality Graphene Layer

30.05.2014

A simple, inexpensive spray method that deposits a graphene film can heal manufacturing defects and produce a high quality graphene layer on a range of substrates, report researchers at the University of Illinois at Chicago and Korea University.

Their study is available online in the journal Advanced Functional Materials.


Photo credit: Suman Sinha-Ray

Using a supersonic spray, graphene flakes with deformed pentagonal and heptagonal structures stretch on impact and spring into a perfect hexagonal graphene lattice. This opens the way to scale up from the microscopic to large scale applications.

Graphene, a two-dimensional wonder-material composed of a single layer of carbon atoms, is strong, transparent, and an excellent conductor of electricity. It has potential in a wide range of applications, such as reinforcing and lending electrical properties to plastics; creating denser and faster integrated circuits; and building better touch screens.

Although the potential uses for graphene seem limitless, there has been no easy way to scale up from microscopic to large-scale applications without introducing defects, says Alexander Yarin, UIC professor of mechanical and industrial engineering and co-principal investigator on the study.

“Normally, graphene is produced in small flakes, and even these small flakes have defects,” Yarin said. Worse, when you try to deposit them onto a large-scale area, defects increase, and graphene’s useful properties — its “magic” — are lost, he said.

Yarin first turned to solving how to deposit graphene flakes to form a consistent layer without any clumps or spaces. He went to Sam S. Yoon, professor of mechanical engineering at Korea University and co-principal investigator on the study.

Yoon had been working with a unique kinetic spray deposition system that exploits the supersonic acceleration of droplets through a Laval nozzle. Although Yoon was working with different materials, Yarin believed his method might be used to deposit graphene flakes into a smooth layer.

Their supersonic spray system produces very small droplets of graphene suspension, which disperse evenly, evaporate rapidly, and reduce the tendency of the graphene flakes to aggregate.

But to the researchers' surprise, defects inherent in the flakes themselves disappeared, as a by-product of the spray method. The result was a higher quality graphene layer, as found in the analysis by another collaborator, Suman Sinha-Ray, senior researcher at United States Gypsum and UIC adjunct professor of mechanical and industrial engineering.

The researchers demonstrated that the energy of the impact stretches the graphene and restructures the arrangement of its carbon atoms into the perfect hexagons of flawless graphene.

“Imagine something like Silly Putty hitting a wall — it stretches out and spreads smoothly,” said Yarin. “That’s what we believe happens with these graphene flakes. They hit with enormous kinetic energy, and stretch in all directions.

"We’re tapping into graphene’s plasticity — it’s actually restructuring.”

Other attempts to produce graphene without defects or to remove flaws after manufacture have proved difficult and prohibitively expensive, Yarin said.

The new method of deposition, which allows graphene to "heal" its defects during application, is simple, inexpensive, and can be performed on any substrate with no need for post-treatment, he said.

Yarin and his Korean colleagues hope to continue their successful collaboration and foster the development of industrial-scale applications of graphene.

Jung-Jae Park, Jung-Gun Lee and You-Hong Cha of Korea University; Sang-Hoon Bae and Jong-Hyun Ahn of Yonsei University; and Yong Chae Jung and Soo Min Kim of the Korea Institute of Science and Technology are co-authors on the paper.

Initial support for the collaboration between Yarin’s group at UIC and Yoon’s group at Korean University was provided by the Office of International Affairs Nuveen International Development Fund at UIC and by Korea University.

Jeanne Galatzer-Levy | newswise
Further information:
http://www.uic.edu

Further reports about: Quality Spray Supersonic UIC defects deposit droplets flakes graphene kinetic

More articles from Materials Sciences:

nachricht World’s Highest Magnetic Field* (1,020MHz) NMR developed
03.07.2015 | National Institute for Materials Science

nachricht Diamond provides technical progress
03.07.2015 | Julius-Maximilians-Universität Würzburg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>