Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity’s third side unmasked

20.06.2011
A previously unknown and unexpected mechanism gives rise to superconductivity in specific types of materials

The debate over the mechanism that causes superconductivity in a class of materials called the pnictides has been settled by a research team from Japan and China[1]. Superconductivity was discovered in the pnictides only recently, and they belong to the class of so-called ‘high-temperature superconductors’.

Despite their name, the temperature at which they function as superconductors is still well below room temperature. Realizing superconductivity at room temperature remains a key challenge in physics; it would revolutionize electronics since electrical devices could operate without losing energy.

Superconductivity in a material arises when two electrons bind together into so-called Cooper pairs. This pairing leads to a gap in the energy spectrum of the superconducting material, which makes the electrons insensitive to the mechanisms causing electrical resistance. Electrons can bind into Cooper pairs in different ways, leading to different categories of superconductors.

Until the work of Takahiro Shimojima from The University of Tokyo and his colleagues, including researchers from the RIKEN SPring-8 Center in Harima, superconducting materials were classified into two broad categories. In classical superconductors, which function at very low temperatures, vibrations of atoms in the crystal lattice of the material provide the necessary glue for the pairing. In cuprates, the original high-temperature superconductor compounds, magnetic interactions based on an electron’s spin generate the superconductive pairing (Fig. 1). In the pnictide high-temperature superconductors, physicists assumed that the underlying mechanism was similar to that for the cuprates, but conflicting experimental results meant that the precise mechanism was controversial.

To investigate this debated pairing mechanism of pnictides, the researchers studied the properties of the material’s electronic gap. Thanks to a unique set of high-energy lasers based on very rare laser crystals available to only a few laboratories, their experiments resolved these states with unprecedented detail.

Shimojima and colleagues were surprised to discover that interactions between electron spins do not cause the electrons to form Cooper pairs in the pnictides. Instead, the coupling is mediated by the electron clouds surrounding the atomic cores. Some of these so-called orbitals have the same energy, which causes interactions and electron fluctuations that are sufficiently strong to mediate superconductivity.

This could spur the discovery of new superconductors based on this mechanism. “Our work establishes the electron orbitals as a third kind of pairing glue for electron pairs in superconductors, next to lattice vibrations and electron spins,” explains Shimojima. “We believe that this finding is a step towards the dream of achieving room-temperature superconductivity,” he concludes.

The corresponding author for this highlight is based at the Excitation Order Research Team, RIKEN SPring-8 Center

Journal information

[1] Shimojima, T., Sakaguchi, F., Ishizaka, K., Ishida, Y., Kiss, T., Okawa, M., Togashi, T., Chen, C.-T., Watanabe, S., Arita, M., et al. Orbital-independent superconducting gaps in iron-pnictides. Science published online 7 April 2011 (doi: 10.1126/science.1202150).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>