Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity: the new high critical temperature superconductors

18.02.2009
The paper published in the Journal of the American Chemical Society (JACS) by a team led by professor Francesc Illas of the UB’s Department of Physical Chemistry and director of the Laboratory of Computational Materials Science (CMSL) will help to broaden our understanding of the nature of superconducting materials and of the origin of the superconductivity phenomenon in high critical temperature materials.

Other participants in the study are Ibério de P. R. Moreira (UB) and Jacek C. Wojdel, currently at the ICMAB-CSIC. The study was carried out with the collaboration of the Barcelona Supercomputing Center (BSC) and the Catalonia Supercomputing Centre (CESCA).

Superconductors are materials that conduct electrical current with zero resistance at low temperatures. Superconductivity was discovered in 1911, and the researchers in this area of solid state physics have been regular recipients of the Nobel Physics Prize: H. K. Onnes (1913), who discovered this extraordinary phenomenon; J. Bardeen, L. Cooper and R. Schrieffer (1972), for the BCS Theory of Superconductivity, which explains how electron pairs are formed (Cooper pairs) and how they conduct electrical current with zero resistance; J.C. Bednorz and K.A. Müller (1987), for their work with ceramic superconducting materials (copper oxides or cuprates) at temperatures above 35 K (-238 ºC) and beyond the boiling point of liquid nitrogen (-196 ºC).

“No theory has been able to account properly for high temperature superconductivity, although it seems to bear a strong relationship with the magnetic properties of materials,” explains Francesc Illas, who is also director of the UB’s Institute of Theoretical and Computational Chemistry (IQTCUB).

In 2008, the discovery of a new family of high critical temperature iron and arsenic superconductors (AsFe) marked a second major revolution in the world of superconductivity. The new compounds, which do not contain copper (Cu) but which have oxygen (O), fluor (F) or arsenic (As) and iron (Fe), will help scientists to solve some of the mysteries in the area of solid state physics.

But are these two high temperature superconductor families really so different? For Francesc Illas, “the main purpose of our work is to stress that these new materials are not as different from cuprates as originally thought. This point is fundamental for defining a unified approach to the two families of superconducting materials.”

According to the new study, the two families of superconducting materials share a similar electronic structure: specifically, Fe and As compounds are antiferromagnetic and exhibit a strong spin frustration, that is, strong magnetic interactions that make the interpretation of experiments difficult.

Another innovation mentioned in the article is the use of sophisticated techniques such as hybrid functionals for the study of electronic structure. “In cuprates,” says Illas, “the most commonly used methodologies are standard LDA (Local Density Approximation) and GGA (Generalized Gradient Approximation), which predict these systems to have a strong metallic character. However, experimental studies on the undoped parent compounds – superconductivity only appears when doping these materials – have shown that cuprates have insulating properties and are antiferromagnetic, but not metallic”. Therefore, the study of these systems will require more elaborate methods than the standard LDA and GGA methods to obtain a satisfactory description of their electronic structure and properties.

According to the experts, studying the electronic structure of the new FeAs based compounds using LDA and GGA also gives erroneous results, as in the case of cuprates. “These techniques,” says Illas, “are unable to give an accurate description of strongly correlated systems (cuprates, new superconductor families, and so on); these limitations have been frequently described in the literature.” More sophisticated approaches are necessary to describe the electronic structure and properties of these magnetic materials.

The discovery of high critical temperature superconductivity is one of the most remarkable chapters in modern science. It is a major breakthrough in developing new technologies and compounds in solid state physics and materials science. Physics experts dream of establishing a satisfactory theoretical model of the electronic structure in order to understand the formation of the superconducting phase, and then to be able to synthesize superconductors at room temperature. This objective seems attainable but not in a near future. For the time being, the most realistic approach is to try to understand the properties of undoped superconducting parent compounds and to progressively understand the effect of doping in the electronic structure of these materials, an area of research in which Illas’s group is one of the leaders in Spain.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>