Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity: the new high critical temperature superconductors

18.02.2009
The paper published in the Journal of the American Chemical Society (JACS) by a team led by professor Francesc Illas of the UB’s Department of Physical Chemistry and director of the Laboratory of Computational Materials Science (CMSL) will help to broaden our understanding of the nature of superconducting materials and of the origin of the superconductivity phenomenon in high critical temperature materials.

Other participants in the study are Ibério de P. R. Moreira (UB) and Jacek C. Wojdel, currently at the ICMAB-CSIC. The study was carried out with the collaboration of the Barcelona Supercomputing Center (BSC) and the Catalonia Supercomputing Centre (CESCA).

Superconductors are materials that conduct electrical current with zero resistance at low temperatures. Superconductivity was discovered in 1911, and the researchers in this area of solid state physics have been regular recipients of the Nobel Physics Prize: H. K. Onnes (1913), who discovered this extraordinary phenomenon; J. Bardeen, L. Cooper and R. Schrieffer (1972), for the BCS Theory of Superconductivity, which explains how electron pairs are formed (Cooper pairs) and how they conduct electrical current with zero resistance; J.C. Bednorz and K.A. Müller (1987), for their work with ceramic superconducting materials (copper oxides or cuprates) at temperatures above 35 K (-238 ºC) and beyond the boiling point of liquid nitrogen (-196 ºC).

“No theory has been able to account properly for high temperature superconductivity, although it seems to bear a strong relationship with the magnetic properties of materials,” explains Francesc Illas, who is also director of the UB’s Institute of Theoretical and Computational Chemistry (IQTCUB).

In 2008, the discovery of a new family of high critical temperature iron and arsenic superconductors (AsFe) marked a second major revolution in the world of superconductivity. The new compounds, which do not contain copper (Cu) but which have oxygen (O), fluor (F) or arsenic (As) and iron (Fe), will help scientists to solve some of the mysteries in the area of solid state physics.

But are these two high temperature superconductor families really so different? For Francesc Illas, “the main purpose of our work is to stress that these new materials are not as different from cuprates as originally thought. This point is fundamental for defining a unified approach to the two families of superconducting materials.”

According to the new study, the two families of superconducting materials share a similar electronic structure: specifically, Fe and As compounds are antiferromagnetic and exhibit a strong spin frustration, that is, strong magnetic interactions that make the interpretation of experiments difficult.

Another innovation mentioned in the article is the use of sophisticated techniques such as hybrid functionals for the study of electronic structure. “In cuprates,” says Illas, “the most commonly used methodologies are standard LDA (Local Density Approximation) and GGA (Generalized Gradient Approximation), which predict these systems to have a strong metallic character. However, experimental studies on the undoped parent compounds – superconductivity only appears when doping these materials – have shown that cuprates have insulating properties and are antiferromagnetic, but not metallic”. Therefore, the study of these systems will require more elaborate methods than the standard LDA and GGA methods to obtain a satisfactory description of their electronic structure and properties.

According to the experts, studying the electronic structure of the new FeAs based compounds using LDA and GGA also gives erroneous results, as in the case of cuprates. “These techniques,” says Illas, “are unable to give an accurate description of strongly correlated systems (cuprates, new superconductor families, and so on); these limitations have been frequently described in the literature.” More sophisticated approaches are necessary to describe the electronic structure and properties of these magnetic materials.

The discovery of high critical temperature superconductivity is one of the most remarkable chapters in modern science. It is a major breakthrough in developing new technologies and compounds in solid state physics and materials science. Physics experts dream of establishing a satisfactory theoretical model of the electronic structure in order to understand the formation of the superconducting phase, and then to be able to synthesize superconductors at room temperature. This objective seems attainable but not in a near future. For the time being, the most realistic approach is to try to understand the properties of undoped superconducting parent compounds and to progressively understand the effect of doping in the electronic structure of these materials, an area of research in which Illas’s group is one of the leaders in Spain.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Materials Sciences:

nachricht Researchers devise microreactor to study formation of methane hydrate
23.08.2017 | NYU Tandon School of Engineering

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>