Superconducting Magnet Generates World’s Highest Magnetic Field at 24T

A team led by Dr. Shinji Matsumoto, a Senior Researcher of the Magnet Development (Group Leader: Tsukasa Kiyoshi), Superconducting Wire Unit (Unit Director: Hitoshi Kitaguchi), National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda) succeeded in generating a magnetic field of 24.0T (tesla), which set a new world’s record for the highest magnetic field with a superconducting magnet. This work was part of the Strategic Promotion of Innovative Research and Development (S-Innovation) program of the Japan Science and Technology Agency (JST), and was carried out jointly with Japan Superconductor Technology, Inc. (President: Yoshiro Nishimoto).

Superconducting magnets used in nuclear magnetic resonance (NMR) devices are required to generate higher magnetic fields because sensitivity and resolution increase with the strength of the generated field. On the other hand, in order to achieve a higher field, a large-scale superconducting magnet is needed. However, this caused the problem of increased consumption of liquid helium, which is necessary in cooling.

The NIMS research group fabricated a coil using a GdBCO thin film wire material (made by Fujikura Ltd.), which is an oxide high temperature superconducting wire material that displays excellent critical current density and mechanical properties in high fields. The developed coil was inserted on the inner side of a metal superconducting magnet that generates a field of 17.2T. As a result, we confirmed that it was possible to generate a field of 24.0T in the center of the magnet. This is the world’s highest value with a single superconducting magnet.

The previous world’s record of 23.5T had been achieved by reducing the temperature to approximately 2K. In contrast, the new record was set at 4.2K (boiling point of liquid helium), as with other widely used superconducting magnets. The total size of the magnet was also greatly reduced. This achievement is an important advance in fabrication technology for high field coils using GdBCO thin film wire material, and also demonstrated the performance of this type of coil in a high field. Use of the developed technology is expected to enable a substantial reduction in the size of high field NMR devices, as well as reduced consumption of liquid helium.

Media Contact

Mikiko Tanifuji Research asia research news

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors