Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting Magnet Generates World’s Highest Magnetic Field at 24T

21.09.2011
Road to Compact, High Field NMR Using Oxide High Temperature Superconducting Materials

A team led by Dr. Shinji Matsumoto, a Senior Researcher of the Magnet Development (Group Leader: Tsukasa Kiyoshi), Superconducting Wire Unit (Unit Director: Hitoshi Kitaguchi), National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda) succeeded in generating a magnetic field of 24.0T (tesla), which set a new world’s record for the highest magnetic field with a superconducting magnet. This work was part of the Strategic Promotion of Innovative Research and Development (S-Innovation) program of the Japan Science and Technology Agency (JST), and was carried out jointly with Japan Superconductor Technology, Inc. (President: Yoshiro Nishimoto).

Superconducting magnets used in nuclear magnetic resonance (NMR) devices are required to generate higher magnetic fields because sensitivity and resolution increase with the strength of the generated field. On the other hand, in order to achieve a higher field, a large-scale superconducting magnet is needed. However, this caused the problem of increased consumption of liquid helium, which is necessary in cooling.

The NIMS research group fabricated a coil using a GdBCO thin film wire material (made by Fujikura Ltd.), which is an oxide high temperature superconducting wire material that displays excellent critical current density and mechanical properties in high fields. The developed coil was inserted on the inner side of a metal superconducting magnet that generates a field of 17.2T. As a result, we confirmed that it was possible to generate a field of 24.0T in the center of the magnet. This is the world’s highest value with a single superconducting magnet.

The previous world’s record of 23.5T had been achieved by reducing the temperature to approximately 2K. In contrast, the new record was set at 4.2K (boiling point of liquid helium), as with other widely used superconducting magnets. The total size of the magnet was also greatly reduced. This achievement is an important advance in fabrication technology for high field coils using GdBCO thin film wire material, and also demonstrated the performance of this type of coil in a high field. Use of the developed technology is expected to enable a substantial reduction in the size of high field NMR devices, as well as reduced consumption of liquid helium.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Scientists announce the quest for high-index materials
24.07.2017 | Moscow Institute of Physics and Technology

nachricht ADIR Project: Lasers Recover Valuable Materials
24.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>