Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting Magnet Generates World’s Highest Magnetic Field at 24T

21.09.2011
Road to Compact, High Field NMR Using Oxide High Temperature Superconducting Materials

A team led by Dr. Shinji Matsumoto, a Senior Researcher of the Magnet Development (Group Leader: Tsukasa Kiyoshi), Superconducting Wire Unit (Unit Director: Hitoshi Kitaguchi), National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda) succeeded in generating a magnetic field of 24.0T (tesla), which set a new world’s record for the highest magnetic field with a superconducting magnet. This work was part of the Strategic Promotion of Innovative Research and Development (S-Innovation) program of the Japan Science and Technology Agency (JST), and was carried out jointly with Japan Superconductor Technology, Inc. (President: Yoshiro Nishimoto).

Superconducting magnets used in nuclear magnetic resonance (NMR) devices are required to generate higher magnetic fields because sensitivity and resolution increase with the strength of the generated field. On the other hand, in order to achieve a higher field, a large-scale superconducting magnet is needed. However, this caused the problem of increased consumption of liquid helium, which is necessary in cooling.

The NIMS research group fabricated a coil using a GdBCO thin film wire material (made by Fujikura Ltd.), which is an oxide high temperature superconducting wire material that displays excellent critical current density and mechanical properties in high fields. The developed coil was inserted on the inner side of a metal superconducting magnet that generates a field of 17.2T. As a result, we confirmed that it was possible to generate a field of 24.0T in the center of the magnet. This is the world’s highest value with a single superconducting magnet.

The previous world’s record of 23.5T had been achieved by reducing the temperature to approximately 2K. In contrast, the new record was set at 4.2K (boiling point of liquid helium), as with other widely used superconducting magnets. The total size of the magnet was also greatly reduced. This achievement is an important advance in fabrication technology for high field coils using GdBCO thin film wire material, and also demonstrated the performance of this type of coil in a high field. Use of the developed technology is expected to enable a substantial reduction in the size of high field NMR devices, as well as reduced consumption of liquid helium.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Triboelectric nanogenerators boost mass spectrometry performance
28.02.2017 | Georgia Institute of Technology

nachricht Nano 'sandwich' offers unique properties
28.02.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>