Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting Magnet Generates World’s Highest Magnetic Field at 24T

21.09.2011
Road to Compact, High Field NMR Using Oxide High Temperature Superconducting Materials

A team led by Dr. Shinji Matsumoto, a Senior Researcher of the Magnet Development (Group Leader: Tsukasa Kiyoshi), Superconducting Wire Unit (Unit Director: Hitoshi Kitaguchi), National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda) succeeded in generating a magnetic field of 24.0T (tesla), which set a new world’s record for the highest magnetic field with a superconducting magnet. This work was part of the Strategic Promotion of Innovative Research and Development (S-Innovation) program of the Japan Science and Technology Agency (JST), and was carried out jointly with Japan Superconductor Technology, Inc. (President: Yoshiro Nishimoto).

Superconducting magnets used in nuclear magnetic resonance (NMR) devices are required to generate higher magnetic fields because sensitivity and resolution increase with the strength of the generated field. On the other hand, in order to achieve a higher field, a large-scale superconducting magnet is needed. However, this caused the problem of increased consumption of liquid helium, which is necessary in cooling.

The NIMS research group fabricated a coil using a GdBCO thin film wire material (made by Fujikura Ltd.), which is an oxide high temperature superconducting wire material that displays excellent critical current density and mechanical properties in high fields. The developed coil was inserted on the inner side of a metal superconducting magnet that generates a field of 17.2T. As a result, we confirmed that it was possible to generate a field of 24.0T in the center of the magnet. This is the world’s highest value with a single superconducting magnet.

The previous world’s record of 23.5T had been achieved by reducing the temperature to approximately 2K. In contrast, the new record was set at 4.2K (boiling point of liquid helium), as with other widely used superconducting magnets. The total size of the magnet was also greatly reduced. This achievement is an important advance in fabrication technology for high field coils using GdBCO thin film wire material, and also demonstrated the performance of this type of coil in a high field. Use of the developed technology is expected to enable a substantial reduction in the size of high field NMR devices, as well as reduced consumption of liquid helium.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>