Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superatomic Nickel core and unusual molecular reactivity

27.02.2015

Scientists in Russian Academy of Sciences, Moscow have revealed a unique molecular fragment Ni2O2, consisting of two nickel atoms and two oxygen atoms, that have shown plausible superatomic properties. Supeatoms are important structural elements in nanoscale organization and they possess unique physical and chemical properties.

Superatom is a combination of two or more atoms that form a stable structural fragment and possess unique physical and chemical properties. Systems, that contain superatoms, open a number of amazing possibilities for not only formation of new materials, but also for revealing unusual chemical reactivity.


Artistic image of Ni2(acac)3+ particle flying in the chamber of mass spectrometer.

Copyright : Ananikov Laboratory (AnanikovLab.ru)

Throughout the chemical transformations process, superatom acts as a single unit and is left unchanged during the reaction. As a result, it would be logical to consider superatoms as elements of periodic table in nanoscale world. Potential area of application of superatoms is quite broad – currently many research directions are explored worldwide in catalysis, material sciences, organometallic chemistry, and medical research.

Modern computations provide a possibility to predict structures that may recognize a "superatom" and even describe some of its properties. However, as far as experiment is concerned, there are currently no universal analytic tools to detect superatoms within complex molecular frameworks.

Indeed, development of advanced experimental approaches to detect superatoms is a key question for future research. The unusual composition of superatoms - the number of atoms involved (often mentioned as "magic" number) - greatly facilitates experimental observations. Higher relative stability is another characteristic feature that helps to detect superatoms and separate them from other molecules.

Scientists of Zelinsky Institute have suggested mass spectrometry as a suitable tool to study superatoms. In the course of the experiment, investigated solution was fed into the ionization chamber of the mass spectrometer through a thin capillary via syringe pump. The solution was further converted into a spray, and compounds were ionized under high voltage and became individually charged particles (Figure 1).

The technique is based on a well-known process that is called electrospray ionization (ESI). Correspondingly, such conditions may induce the formation of particles containing superatomic cores, which are further identified in a collision with nitrogen molecules in the second part of the apparatus. By varying the parameters of the collision, it is possible to estimate the relative stability and to identify the most stable ions.

Extraordinary properties were revealed in the electrospray ionization mass spectrometry experiment, carried out for the solution of simple and well-known nickel salt, namely - nickel(II) acetylacetonate. After a detailed analysis of the obtained spectra, the authors found a surprisingly stable ion Ni2(acac)3+, which contained the Ni2O2 core. During the bombardment of ions by nitrogen molecules (ESI-MS/MS experiment), it was possible to establish a series of relative stability, based on the number of nickel atoms that make up the ion: Ni2 >> Ni3 ≈ Ni1. In a series of experiments an interesting trend of exceptional stability of bimetallic complex compared to mono- and trimetallic complexes was observed.

Unusual chemical processes were revealed upon examination of the metal complex with Ni2O2 core that contains two atoms of nickel and three residues of acetylacetonate. In spite of diverse reactivity and several fragmentation pathways, the principal Ni2O2 core remained unchanged. From the chemical point of view, most important features were found in the reactions occurring as a result of C-C, C-H and C-O bond activation – the key processes in terms of possible applications in organic chemistry and catalysis.

One of the priority targets of modern catalysis is a modification of the organic fragments (coordinated as ligands) that does not affect the active site of the catalyst. Numerous studies have shown that it is not a simple task, because carbon-carbon, carbon-oxygen and carbon-hydrogen bonds in organic fragments are usually stronger (and more difficult to break) compared to the weak donor-acceptor bonds in the coordination complexes.

Formation of superatomic core in such systems gives a chance to totally change established opinions on what organometallic complexes are and how the reactivity can be tuned. New reactivity patterns would allow scientists to exploit new properties of well-known compounds and to solve chemical problems that previously seemed extraordinary.

Results of this study are important in order to understand fundamental principles of superatoms’ chemistry and to develop new catalytic systems for fine organic synthesis. As Prof. Ananikov mentioned: "Nickel complexes are very cheap and easily available. Surprisingly, some nickel complexes have shown superior properties to already known, much more expansive catalysts. We can expect more and more powerful catalytic applications of nickel complexes in the nearest future".

The first part of this study: "Exceptional Behavior of Ni2O2 Species Revealed by ESI-MS and MS/ MS Studies in Solution. Application of Superatomic Core to Facilitate New Chemical Transformations", by Dmitry B. Eremin and Valentine P. Ananikov has been published in Organometallics (American Chemical Society).

Reference: Organometallics, DOI: 10.1021/om500637k
http://pubs.acs.org/doi/abs/10.1021/om500637k


Associated links
http://AnanikovLab.ru

Ananikov Laboratory | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>