Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superatomic Nickel core and unusual molecular reactivity

27.02.2015

Scientists in Russian Academy of Sciences, Moscow have revealed a unique molecular fragment Ni2O2, consisting of two nickel atoms and two oxygen atoms, that have shown plausible superatomic properties. Supeatoms are important structural elements in nanoscale organization and they possess unique physical and chemical properties.

Superatom is a combination of two or more atoms that form a stable structural fragment and possess unique physical and chemical properties. Systems, that contain superatoms, open a number of amazing possibilities for not only formation of new materials, but also for revealing unusual chemical reactivity.


Artistic image of Ni2(acac)3+ particle flying in the chamber of mass spectrometer.

Copyright : Ananikov Laboratory (AnanikovLab.ru)

Throughout the chemical transformations process, superatom acts as a single unit and is left unchanged during the reaction. As a result, it would be logical to consider superatoms as elements of periodic table in nanoscale world. Potential area of application of superatoms is quite broad – currently many research directions are explored worldwide in catalysis, material sciences, organometallic chemistry, and medical research.

Modern computations provide a possibility to predict structures that may recognize a "superatom" and even describe some of its properties. However, as far as experiment is concerned, there are currently no universal analytic tools to detect superatoms within complex molecular frameworks.

Indeed, development of advanced experimental approaches to detect superatoms is a key question for future research. The unusual composition of superatoms - the number of atoms involved (often mentioned as "magic" number) - greatly facilitates experimental observations. Higher relative stability is another characteristic feature that helps to detect superatoms and separate them from other molecules.

Scientists of Zelinsky Institute have suggested mass spectrometry as a suitable tool to study superatoms. In the course of the experiment, investigated solution was fed into the ionization chamber of the mass spectrometer through a thin capillary via syringe pump. The solution was further converted into a spray, and compounds were ionized under high voltage and became individually charged particles (Figure 1).

The technique is based on a well-known process that is called electrospray ionization (ESI). Correspondingly, such conditions may induce the formation of particles containing superatomic cores, which are further identified in a collision with nitrogen molecules in the second part of the apparatus. By varying the parameters of the collision, it is possible to estimate the relative stability and to identify the most stable ions.

Extraordinary properties were revealed in the electrospray ionization mass spectrometry experiment, carried out for the solution of simple and well-known nickel salt, namely - nickel(II) acetylacetonate. After a detailed analysis of the obtained spectra, the authors found a surprisingly stable ion Ni2(acac)3+, which contained the Ni2O2 core. During the bombardment of ions by nitrogen molecules (ESI-MS/MS experiment), it was possible to establish a series of relative stability, based on the number of nickel atoms that make up the ion: Ni2 >> Ni3 ≈ Ni1. In a series of experiments an interesting trend of exceptional stability of bimetallic complex compared to mono- and trimetallic complexes was observed.

Unusual chemical processes were revealed upon examination of the metal complex with Ni2O2 core that contains two atoms of nickel and three residues of acetylacetonate. In spite of diverse reactivity and several fragmentation pathways, the principal Ni2O2 core remained unchanged. From the chemical point of view, most important features were found in the reactions occurring as a result of C-C, C-H and C-O bond activation – the key processes in terms of possible applications in organic chemistry and catalysis.

One of the priority targets of modern catalysis is a modification of the organic fragments (coordinated as ligands) that does not affect the active site of the catalyst. Numerous studies have shown that it is not a simple task, because carbon-carbon, carbon-oxygen and carbon-hydrogen bonds in organic fragments are usually stronger (and more difficult to break) compared to the weak donor-acceptor bonds in the coordination complexes.

Formation of superatomic core in such systems gives a chance to totally change established opinions on what organometallic complexes are and how the reactivity can be tuned. New reactivity patterns would allow scientists to exploit new properties of well-known compounds and to solve chemical problems that previously seemed extraordinary.

Results of this study are important in order to understand fundamental principles of superatoms’ chemistry and to develop new catalytic systems for fine organic synthesis. As Prof. Ananikov mentioned: "Nickel complexes are very cheap and easily available. Surprisingly, some nickel complexes have shown superior properties to already known, much more expansive catalysts. We can expect more and more powerful catalytic applications of nickel complexes in the nearest future".

The first part of this study: "Exceptional Behavior of Ni2O2 Species Revealed by ESI-MS and MS/ MS Studies in Solution. Application of Superatomic Core to Facilitate New Chemical Transformations", by Dmitry B. Eremin and Valentine P. Ananikov has been published in Organometallics (American Chemical Society).

Reference: Organometallics, DOI: 10.1021/om500637k
http://pubs.acs.org/doi/abs/10.1021/om500637k


Associated links
http://AnanikovLab.ru

Ananikov Laboratory | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>