Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Observation of Swelling of Single-Particle of Silicon Electrode for Lithium Ion Batteries during Charging Reaction

29.04.2013
The NIMS Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) and Tokyo Metropolitan University have measured the volumetric expansion of single particles of silicon accompanying the charging reaction. This finding demonstrated the importance of electrode design from the viewpoint of volumetric energy density.
The NIMS Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) and a research group at Tokyo Metropolitan University succeeded in measuring the volumetric expansion of single particles of silicon, which is a negative electrode material for lithium ion batteries, accompanying the charging reaction, and demonstrated the importance of electrode design from the viewpoint of volumetric energy density based on this finding.

A research group headed by Dr. Kiyoshi Kanamura (NIMS Special Researcher) and Dr. Kei Nishikawa (Postdoctoral Researcher) at the Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) of the National Institute for Materials Science (President: Sukekatsu Ushioda), in joint research with Tokyo Metropolitan University (President: Fumio Harashima), succeeded in measuring the volumetric expansion of single particles of silicon, which is a negative electrode material for lithium (Li) ion batteries, accompanying the charging reaction, and demonstrated the importance of electrode design from the viewpoint of volumetric energy density.

Li-ion batteries are a type of secondary cell in which a Li-containing transition metal oxide is used as the positive electrode and graphite is used as the negative electrode. Because Li-ion batteries have high energy density in comparison with other secondary cells, such as nickel-metal hydride (NIMH) batteries, etc., they are widely used as a power source for mobile electronics, and are also considered promising for electric vehicle (EV) and stationary power storage applications. At present, graphite is used as the negative electrode material, but in order to achieve higher energy density, materials which utilize the alloying reaction with lithium, represented by silicon, have attracted attention as next-generation negative electrode materials. The most important issues for practical application are elucidation of the mechanism of the large volume change which occur in the charging and discharging reactions, and control of those changes.

A research group at Tokyo Metropolitan University established the technology of a single-particle measurement system to investigate the intrinsic electrochemical properties of single particles of electrode materials for Li-ion batteries. In the present research, this system was introduced in the ultra-dry room at the NIMS Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), and was used to perform electrochemical measurements of single particles (10-20ìm) of silicon, which is seen as a next-generation negative electrode material. To date, the expansion ratio, etc. of single particles of silicon had been estimated from the theoretical crystal size, and volumetric changes accompanying the charging and discharging reactions had not been evaluated quantitatively. This research result was the world’s first example of successful measurement of volumetric expansion of a single particle of silicon accompanying the charging reaction.

The results of this experiment clarified the fact that the volumetric expansion of silicon in the charging reaction is larger than the value estimated theoretically. Although this is thought to be due to the formation of an amorphous phase, etc. as the alloying reaction between the lithium and silicon proceeds, further study will be necessary in order to elucidate the detailed mechanism. Standards have now been established for Li-ion batteries for electric vehicle (EV) and cellphone applications. Conventionally, evaluations of material performance had centered on energy density per unit of mass. However, volumetric energy density is increasingly considered more important than mass energy density. As the present research showed, silicon displays larger volumetric expansion than the predicted value, which results in a decrease in real energy density. Thus, this research demonstrated the importance of actual measurement of volumetric expansion in the search for candidates for next-generation battery materials.

As described above, this research showed the importance of measuring the actual volumetric energy density when adopting a material that displays volumetric changes during charging/discharging in the electrodes of Li-ion batteries. Based on this result, electrode design guidelines which also consider volumetric changes are necessary in research and development in the search for next-generation materials for Li-ion batteries.

These research results was presented at the 80th Spring Meeting of the Electrochemical Society of Japan, which was held at Tohoku University on March 29.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/03/p201303270.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>