Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Observation of Swelling of Single-Particle of Silicon Electrode for Lithium Ion Batteries during Charging Reaction

29.04.2013
The NIMS Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) and Tokyo Metropolitan University have measured the volumetric expansion of single particles of silicon accompanying the charging reaction. This finding demonstrated the importance of electrode design from the viewpoint of volumetric energy density.
The NIMS Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) and a research group at Tokyo Metropolitan University succeeded in measuring the volumetric expansion of single particles of silicon, which is a negative electrode material for lithium ion batteries, accompanying the charging reaction, and demonstrated the importance of electrode design from the viewpoint of volumetric energy density based on this finding.

A research group headed by Dr. Kiyoshi Kanamura (NIMS Special Researcher) and Dr. Kei Nishikawa (Postdoctoral Researcher) at the Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) of the National Institute for Materials Science (President: Sukekatsu Ushioda), in joint research with Tokyo Metropolitan University (President: Fumio Harashima), succeeded in measuring the volumetric expansion of single particles of silicon, which is a negative electrode material for lithium (Li) ion batteries, accompanying the charging reaction, and demonstrated the importance of electrode design from the viewpoint of volumetric energy density.

Li-ion batteries are a type of secondary cell in which a Li-containing transition metal oxide is used as the positive electrode and graphite is used as the negative electrode. Because Li-ion batteries have high energy density in comparison with other secondary cells, such as nickel-metal hydride (NIMH) batteries, etc., they are widely used as a power source for mobile electronics, and are also considered promising for electric vehicle (EV) and stationary power storage applications. At present, graphite is used as the negative electrode material, but in order to achieve higher energy density, materials which utilize the alloying reaction with lithium, represented by silicon, have attracted attention as next-generation negative electrode materials. The most important issues for practical application are elucidation of the mechanism of the large volume change which occur in the charging and discharging reactions, and control of those changes.

A research group at Tokyo Metropolitan University established the technology of a single-particle measurement system to investigate the intrinsic electrochemical properties of single particles of electrode materials for Li-ion batteries. In the present research, this system was introduced in the ultra-dry room at the NIMS Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), and was used to perform electrochemical measurements of single particles (10-20ìm) of silicon, which is seen as a next-generation negative electrode material. To date, the expansion ratio, etc. of single particles of silicon had been estimated from the theoretical crystal size, and volumetric changes accompanying the charging and discharging reactions had not been evaluated quantitatively. This research result was the world’s first example of successful measurement of volumetric expansion of a single particle of silicon accompanying the charging reaction.

The results of this experiment clarified the fact that the volumetric expansion of silicon in the charging reaction is larger than the value estimated theoretically. Although this is thought to be due to the formation of an amorphous phase, etc. as the alloying reaction between the lithium and silicon proceeds, further study will be necessary in order to elucidate the detailed mechanism. Standards have now been established for Li-ion batteries for electric vehicle (EV) and cellphone applications. Conventionally, evaluations of material performance had centered on energy density per unit of mass. However, volumetric energy density is increasingly considered more important than mass energy density. As the present research showed, silicon displays larger volumetric expansion than the predicted value, which results in a decrease in real energy density. Thus, this research demonstrated the importance of actual measurement of volumetric expansion in the search for candidates for next-generation battery materials.

As described above, this research showed the importance of measuring the actual volumetric energy density when adopting a material that displays volumetric changes during charging/discharging in the electrodes of Li-ion batteries. Based on this result, electrode design guidelines which also consider volumetric changes are necessary in research and development in the search for next-generation materials for Li-ion batteries.

These research results was presented at the 80th Spring Meeting of the Electrochemical Society of Japan, which was held at Tohoku University on March 29.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/03/p201303270.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>