Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Observation of Swelling of Single-Particle of Silicon Electrode for Lithium Ion Batteries during Charging Reaction

29.04.2013
The NIMS Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) and Tokyo Metropolitan University have measured the volumetric expansion of single particles of silicon accompanying the charging reaction. This finding demonstrated the importance of electrode design from the viewpoint of volumetric energy density.
The NIMS Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) and a research group at Tokyo Metropolitan University succeeded in measuring the volumetric expansion of single particles of silicon, which is a negative electrode material for lithium ion batteries, accompanying the charging reaction, and demonstrated the importance of electrode design from the viewpoint of volumetric energy density based on this finding.

A research group headed by Dr. Kiyoshi Kanamura (NIMS Special Researcher) and Dr. Kei Nishikawa (Postdoctoral Researcher) at the Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) of the National Institute for Materials Science (President: Sukekatsu Ushioda), in joint research with Tokyo Metropolitan University (President: Fumio Harashima), succeeded in measuring the volumetric expansion of single particles of silicon, which is a negative electrode material for lithium (Li) ion batteries, accompanying the charging reaction, and demonstrated the importance of electrode design from the viewpoint of volumetric energy density.

Li-ion batteries are a type of secondary cell in which a Li-containing transition metal oxide is used as the positive electrode and graphite is used as the negative electrode. Because Li-ion batteries have high energy density in comparison with other secondary cells, such as nickel-metal hydride (NIMH) batteries, etc., they are widely used as a power source for mobile electronics, and are also considered promising for electric vehicle (EV) and stationary power storage applications. At present, graphite is used as the negative electrode material, but in order to achieve higher energy density, materials which utilize the alloying reaction with lithium, represented by silicon, have attracted attention as next-generation negative electrode materials. The most important issues for practical application are elucidation of the mechanism of the large volume change which occur in the charging and discharging reactions, and control of those changes.

A research group at Tokyo Metropolitan University established the technology of a single-particle measurement system to investigate the intrinsic electrochemical properties of single particles of electrode materials for Li-ion batteries. In the present research, this system was introduced in the ultra-dry room at the NIMS Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), and was used to perform electrochemical measurements of single particles (10-20ìm) of silicon, which is seen as a next-generation negative electrode material. To date, the expansion ratio, etc. of single particles of silicon had been estimated from the theoretical crystal size, and volumetric changes accompanying the charging and discharging reactions had not been evaluated quantitatively. This research result was the world’s first example of successful measurement of volumetric expansion of a single particle of silicon accompanying the charging reaction.

The results of this experiment clarified the fact that the volumetric expansion of silicon in the charging reaction is larger than the value estimated theoretically. Although this is thought to be due to the formation of an amorphous phase, etc. as the alloying reaction between the lithium and silicon proceeds, further study will be necessary in order to elucidate the detailed mechanism. Standards have now been established for Li-ion batteries for electric vehicle (EV) and cellphone applications. Conventionally, evaluations of material performance had centered on energy density per unit of mass. However, volumetric energy density is increasingly considered more important than mass energy density. As the present research showed, silicon displays larger volumetric expansion than the predicted value, which results in a decrease in real energy density. Thus, this research demonstrated the importance of actual measurement of volumetric expansion in the search for candidates for next-generation battery materials.

As described above, this research showed the importance of measuring the actual volumetric energy density when adopting a material that displays volumetric changes during charging/discharging in the electrodes of Li-ion batteries. Based on this result, electrode design guidelines which also consider volumetric changes are necessary in research and development in the search for next-generation materials for Li-ion batteries.

These research results was presented at the 80th Spring Meeting of the Electrochemical Society of Japan, which was held at Tohoku University on March 29.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/03/p201303270.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>