Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Growth of Regularly-Ordered Nanometer-scale Crystalline Thin Film Using 3D Porous Material

29.08.2012
Japanese scientists have succeeded in fabricating a crystalline thin film with a film thickness of nanometer order, in which molecules of a 3-dimensionally strong porous coordination polymer (PCP) are oriented in a designated direction, and demonstrated that this thin film has a reversible gas adsorption/desorption reaction function.
Japan Synchrotron Radiation Research Institute
Kyoto University
National Institute for Materials Science

A joint research group consisting of the Japan Synchrotron Radiation Research Institute (SPring-8), Kyoto University, and the National Institute for Materials Science (NIMS) succeeded in fabricating a crystalline thin film with a film thickness of nanometer order, in which molecules of a 3-dimensionally strong porous coordination polymer (PCP) are arranged (oriented) in a designated direction, and demonstrated that this thin film has a reversible gas adsorption/desorption reaction function.

Abstract
A joint research group consisting of the Japan Synchrotron Radiation Research Institute (JASRI located at the SPring-8 site), Kyoto University, and the National Institute for Materials Science (NIMS) succeeded in fabricating a crystalline thin film with a film thickness of nanometer order, in which molecules of a 3-dimensionally strong porous coordination polymer (hereinafter, PCP) are arranged (oriented) in a designated direction, and demonstrated that this thin film has a reversible gas adsorption/desorption reaction function.

A variety of functions can be expected with PCP, which possesses high gas adsorption characteristics and high regularity (crystallinity), including high efficiency separation and concentration of gas molecules, reaction in the interiors of the pores, etc. For this reason, it is possible to fabricate various types of energy related devices, such as high efficiency fuel cells, etc., by integrating PCP having different functions. When constructing devices of this type, fabrication in which the orientations of the crystals in multiple PCP films are aligned, in other words, oriented growth, is necessary and indispensable for integration of different types of PCP with tight adhesion. However, until now, oriented growth had only been successful with planarly-rigid PCP. In order to realize diverse functions, durability of the fabricated device, and adhesion between different types of PCP during integration, a technology which enables oriented growth of crystals of PCP with 3-dimensional rigidity had been desired.

In this work, the joint research group succeeded in fabrication of a 3-dimensional PCP nanometer scale thin film in which oriented growth was realized by selection of an appropriate substrate for oriented growth, surface processing of that substrate, and selection of a metal-organic framework (MOF) material that enables control of the growth direction while also displaying 3-dimensional rigidity. In addition to the fact that a reversible gas adsorption-desorption occurs in this nanometer scale thin film, the rigidity of the thin film was also confirmed, meaning that adsorption-desorption reaction can be performed without accompanying changes in the frame structure. The oriented growth of these nanometer scale thin films and structural changes during adsorption and desorption could be confirmed for the first time in detailed diffraction experiments using the brilliant X-rays at the SPring-8.

Because these research results will provide the basic technology for fabrication of new functional devices by integration of PCP with different functions, it is expected that research and development on functional devices using nanometer scale thin films and application to high performance in fuel cells, etc. will be greatly accelerated.

This research was carried out as part of the research project gCreation of Metal-Organic Hybrid Protonics and Functional Nano-Layer Integrated Systemh (Hiroshi Kitagawa, Research Representative) in the gDevelopment of the Foundation for Nano-Interface Technologyh project under the Core Research for Evolutional Science and Technology (CREST) team-type research program of the Japan Science and Technology Agency (JST). The measurements were supported by JASRI using the SPring-8.

The original paper in connection with these research results was published in the June 13 edition of the gJournal of the American Chemical Society.h See: http://pubs.acs.org/doi/abs/10.1021/ja304361v
For more details
Osami Sakata
Station Director,
Synchrotron X-ray Station at SPring-8, NIMS
TEL:+81-791-58-1970
E-Mail: SAKATA.Osami=nims.go.jp
(Please change "=" to "@")

Akihiko Fujiwara
Japan Synchrotron Radiation Research Institute (JASRI)
TEL:+81-791-58-2750
E-Mail: fujiwara=spring8.or.jp
(Please change "=" to "@")

Kazuya Otsubo
Graduate School of Science, Kyoto University
TEL:+81-75-753-4037
E-Mail: kazuya=kuchem.kyoto-u.ac.jp
(Please change "=" to "@")

Hiroshi Kitagawa
Professor, Graduate School of Science, Kyoto University
TEL:+81-75-753-4035
E-Mail: kitagawa=kuchem.kyoto-u.ac.jp
(Please change "=" to "@")

For more information on SPring-8
Public Relations Office
Japan Synchrotron Radiation Research Institute (JASRI)
TEL:+81-791-58-2785
FAX:+81-791-58-2786
E-Mail: kouhou=spring8.or.jp
(Please change "=" to "@")

For general inquiry
Kyoto University Public Relation Division
TEL:+81-75-753-2071
E-Mail: kohho52=mail2.adm.kyoto-u.ac.jp
(Please change "=" to "@")

NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-Mail:pr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2012/07/p201207190.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Scientists predict a new superhard material with unique properties
18.06.2018 | Moscow Institute of Physics and Technology

nachricht A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive
15.06.2018 | University of California - San Diego

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>