Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Growth of Regularly-Ordered Nanometer-scale Crystalline Thin Film Using 3D Porous Material

29.08.2012
Japanese scientists have succeeded in fabricating a crystalline thin film with a film thickness of nanometer order, in which molecules of a 3-dimensionally strong porous coordination polymer (PCP) are oriented in a designated direction, and demonstrated that this thin film has a reversible gas adsorption/desorption reaction function.
Japan Synchrotron Radiation Research Institute
Kyoto University
National Institute for Materials Science

A joint research group consisting of the Japan Synchrotron Radiation Research Institute (SPring-8), Kyoto University, and the National Institute for Materials Science (NIMS) succeeded in fabricating a crystalline thin film with a film thickness of nanometer order, in which molecules of a 3-dimensionally strong porous coordination polymer (PCP) are arranged (oriented) in a designated direction, and demonstrated that this thin film has a reversible gas adsorption/desorption reaction function.

Abstract
A joint research group consisting of the Japan Synchrotron Radiation Research Institute (JASRI located at the SPring-8 site), Kyoto University, and the National Institute for Materials Science (NIMS) succeeded in fabricating a crystalline thin film with a film thickness of nanometer order, in which molecules of a 3-dimensionally strong porous coordination polymer (hereinafter, PCP) are arranged (oriented) in a designated direction, and demonstrated that this thin film has a reversible gas adsorption/desorption reaction function.

A variety of functions can be expected with PCP, which possesses high gas adsorption characteristics and high regularity (crystallinity), including high efficiency separation and concentration of gas molecules, reaction in the interiors of the pores, etc. For this reason, it is possible to fabricate various types of energy related devices, such as high efficiency fuel cells, etc., by integrating PCP having different functions. When constructing devices of this type, fabrication in which the orientations of the crystals in multiple PCP films are aligned, in other words, oriented growth, is necessary and indispensable for integration of different types of PCP with tight adhesion. However, until now, oriented growth had only been successful with planarly-rigid PCP. In order to realize diverse functions, durability of the fabricated device, and adhesion between different types of PCP during integration, a technology which enables oriented growth of crystals of PCP with 3-dimensional rigidity had been desired.

In this work, the joint research group succeeded in fabrication of a 3-dimensional PCP nanometer scale thin film in which oriented growth was realized by selection of an appropriate substrate for oriented growth, surface processing of that substrate, and selection of a metal-organic framework (MOF) material that enables control of the growth direction while also displaying 3-dimensional rigidity. In addition to the fact that a reversible gas adsorption-desorption occurs in this nanometer scale thin film, the rigidity of the thin film was also confirmed, meaning that adsorption-desorption reaction can be performed without accompanying changes in the frame structure. The oriented growth of these nanometer scale thin films and structural changes during adsorption and desorption could be confirmed for the first time in detailed diffraction experiments using the brilliant X-rays at the SPring-8.

Because these research results will provide the basic technology for fabrication of new functional devices by integration of PCP with different functions, it is expected that research and development on functional devices using nanometer scale thin films and application to high performance in fuel cells, etc. will be greatly accelerated.

This research was carried out as part of the research project gCreation of Metal-Organic Hybrid Protonics and Functional Nano-Layer Integrated Systemh (Hiroshi Kitagawa, Research Representative) in the gDevelopment of the Foundation for Nano-Interface Technologyh project under the Core Research for Evolutional Science and Technology (CREST) team-type research program of the Japan Science and Technology Agency (JST). The measurements were supported by JASRI using the SPring-8.

The original paper in connection with these research results was published in the June 13 edition of the gJournal of the American Chemical Society.h See: http://pubs.acs.org/doi/abs/10.1021/ja304361v
For more details
Osami Sakata
Station Director,
Synchrotron X-ray Station at SPring-8, NIMS
TEL:+81-791-58-1970
E-Mail: SAKATA.Osami=nims.go.jp
(Please change "=" to "@")

Akihiko Fujiwara
Japan Synchrotron Radiation Research Institute (JASRI)
TEL:+81-791-58-2750
E-Mail: fujiwara=spring8.or.jp
(Please change "=" to "@")

Kazuya Otsubo
Graduate School of Science, Kyoto University
TEL:+81-75-753-4037
E-Mail: kazuya=kuchem.kyoto-u.ac.jp
(Please change "=" to "@")

Hiroshi Kitagawa
Professor, Graduate School of Science, Kyoto University
TEL:+81-75-753-4035
E-Mail: kitagawa=kuchem.kyoto-u.ac.jp
(Please change "=" to "@")

For more information on SPring-8
Public Relations Office
Japan Synchrotron Radiation Research Institute (JASRI)
TEL:+81-791-58-2785
FAX:+81-791-58-2786
E-Mail: kouhou=spring8.or.jp
(Please change "=" to "@")

For general inquiry
Kyoto University Public Relation Division
TEL:+81-75-753-2071
E-Mail: kohho52=mail2.adm.kyoto-u.ac.jp
(Please change "=" to "@")

NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-Mail:pr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2012/07/p201207190.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>