Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Success in Development of High Temperature, High Speed Metal Fatigue Test Device with 1000°C Heat Resistance

An Important Contribution to Securing the Safety of Jet Engines and Gas Turbines for Power Generation

A research group led by Dr. Yoshiyuki Furuya, a Senior Researcher of the Materials Reliability Unit, National Institute for Materials Science, succeeded in the development of a high temperature ultrasonic fatigue test technology which is capable of evaluating the metal fatigue properties for critical components under high temperature, high frequency vibration environments which closely resemble the interior of jet engines and gas turbines.

A research group led by Dr. Yoshiyuki Furuya, a Senior Researcher of the Materials Reliability Unit (Unit Director: Kazuhiro Kimura), National Institute for Materials Science (President: Sukekatsu Ushioda), succeeded in the development of a high temperature ultrasonic fatigue test technology which is capable of evaluating the metal fatigue properties for critical components under high temperature, high frequency vibration environments which closely resemble the interior of jet engines and gas turbines.

Turbine blades in jet engines and gas turbines are subject to resonance, which causes high speed vibration a frequency of several 1000Hz. In fatigue due to this vibration, the number of cycles exceeds 1 gigacycles (109, or 1 billion cycles). However, conventional fatigue tests are performed at a low frequency on the order of 10Hz (10 cycles per second, or 109 cycles in 3 years), and therefore require an extended test period. For this reason, evaluations of the fatigue properties of materials had been limited to around 107 cycles, which can be achieved in approximately 1 week.

In contrast, in this research, the NIMS Group conceived application of ultrasonic fatigue test technology, which is capable of realizing fatigue testing at a high frequency of 20,000Hz (20,000 cycles/second, achieving 109 cycles in 1 day) using ultrasonic vibration. Using this technology, the fatigue properties of materials can be evaluated rapidly up to the gigacycle region.

Because ultrasonic fatigue testing is a special test method using the phenomenon of resonance, the number of factors influenced by temperature is extremely large, and it was difficult to designate and make a device follow all these factors. To solve this problem, the NIMS group carried out a detailed analysis of the factors which are influenced by temperature, reviewed the control method, and added/improved part design and sensors. The team also discovered factors which had been overlooked in conventional research by a process which enhanced the completeness of the device while conducting trial-and-error experiments, and succeeded in correcting those problems. As a result, it was possible to develop a completely new device incorporating a large number of special improvements, based on a commercial testing device. The developed device can realize high accuracy ultrasonic fatigue tests at a high temperature of 1000°C, and thus is capable of performing fatigue testing under environments similar to the service environments of jet engines and gas turbines, which are exposed to high frequency vibration at high temperature.

In demonstration tests, the results of fatigue tests performed with the device developed in this research were in good agreement with the comparison data (fatigue test results accumulated over a long period of several decades), showing the high reliability of the test results with the developed device. The development of a high temperature ultrasonic fatigue test device enabling testing up to 1000°C and confirmation of the reliability of the test results will contribute to improved reliability in jet engines and gas turbines, and is also expected to accelerate research and development of materials for use in high strength turbine blades.

The results of this research were presented on July 18 at the M&M 2011 Materials and Mechanics Conference of the Japan Society of Mechanical Engineers.

Mikiko Tanifuji | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

More VideoLinks >>>