Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Development of High Temperature, High Speed Metal Fatigue Test Device with 1000°C Heat Resistance

21.09.2011
An Important Contribution to Securing the Safety of Jet Engines and Gas Turbines for Power Generation

A research group led by Dr. Yoshiyuki Furuya, a Senior Researcher of the Materials Reliability Unit, National Institute for Materials Science, succeeded in the development of a high temperature ultrasonic fatigue test technology which is capable of evaluating the metal fatigue properties for critical components under high temperature, high frequency vibration environments which closely resemble the interior of jet engines and gas turbines.

A research group led by Dr. Yoshiyuki Furuya, a Senior Researcher of the Materials Reliability Unit (Unit Director: Kazuhiro Kimura), National Institute for Materials Science (President: Sukekatsu Ushioda), succeeded in the development of a high temperature ultrasonic fatigue test technology which is capable of evaluating the metal fatigue properties for critical components under high temperature, high frequency vibration environments which closely resemble the interior of jet engines and gas turbines.

Turbine blades in jet engines and gas turbines are subject to resonance, which causes high speed vibration a frequency of several 1000Hz. In fatigue due to this vibration, the number of cycles exceeds 1 gigacycles (109, or 1 billion cycles). However, conventional fatigue tests are performed at a low frequency on the order of 10Hz (10 cycles per second, or 109 cycles in 3 years), and therefore require an extended test period. For this reason, evaluations of the fatigue properties of materials had been limited to around 107 cycles, which can be achieved in approximately 1 week.

In contrast, in this research, the NIMS Group conceived application of ultrasonic fatigue test technology, which is capable of realizing fatigue testing at a high frequency of 20,000Hz (20,000 cycles/second, achieving 109 cycles in 1 day) using ultrasonic vibration. Using this technology, the fatigue properties of materials can be evaluated rapidly up to the gigacycle region.

Because ultrasonic fatigue testing is a special test method using the phenomenon of resonance, the number of factors influenced by temperature is extremely large, and it was difficult to designate and make a device follow all these factors. To solve this problem, the NIMS group carried out a detailed analysis of the factors which are influenced by temperature, reviewed the control method, and added/improved part design and sensors. The team also discovered factors which had been overlooked in conventional research by a process which enhanced the completeness of the device while conducting trial-and-error experiments, and succeeded in correcting those problems. As a result, it was possible to develop a completely new device incorporating a large number of special improvements, based on a commercial testing device. The developed device can realize high accuracy ultrasonic fatigue tests at a high temperature of 1000°C, and thus is capable of performing fatigue testing under environments similar to the service environments of jet engines and gas turbines, which are exposed to high frequency vibration at high temperature.

In demonstration tests, the results of fatigue tests performed with the device developed in this research were in good agreement with the comparison data (fatigue test results accumulated over a long period of several decades), showing the high reliability of the test results with the developed device. The development of a high temperature ultrasonic fatigue test device enabling testing up to 1000°C and confirmation of the reliability of the test results will contribute to improved reliability in jet engines and gas turbines, and is also expected to accelerate research and development of materials for use in high strength turbine blades.

The results of this research were presented on July 18 at the M&M 2011 Materials and Mechanics Conference of the Japan Society of Mechanical Engineers.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/index.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>