Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Development of High Temperature, High Speed Metal Fatigue Test Device with 1000°C Heat Resistance

21.09.2011
An Important Contribution to Securing the Safety of Jet Engines and Gas Turbines for Power Generation

A research group led by Dr. Yoshiyuki Furuya, a Senior Researcher of the Materials Reliability Unit, National Institute for Materials Science, succeeded in the development of a high temperature ultrasonic fatigue test technology which is capable of evaluating the metal fatigue properties for critical components under high temperature, high frequency vibration environments which closely resemble the interior of jet engines and gas turbines.

A research group led by Dr. Yoshiyuki Furuya, a Senior Researcher of the Materials Reliability Unit (Unit Director: Kazuhiro Kimura), National Institute for Materials Science (President: Sukekatsu Ushioda), succeeded in the development of a high temperature ultrasonic fatigue test technology which is capable of evaluating the metal fatigue properties for critical components under high temperature, high frequency vibration environments which closely resemble the interior of jet engines and gas turbines.

Turbine blades in jet engines and gas turbines are subject to resonance, which causes high speed vibration a frequency of several 1000Hz. In fatigue due to this vibration, the number of cycles exceeds 1 gigacycles (109, or 1 billion cycles). However, conventional fatigue tests are performed at a low frequency on the order of 10Hz (10 cycles per second, or 109 cycles in 3 years), and therefore require an extended test period. For this reason, evaluations of the fatigue properties of materials had been limited to around 107 cycles, which can be achieved in approximately 1 week.

In contrast, in this research, the NIMS Group conceived application of ultrasonic fatigue test technology, which is capable of realizing fatigue testing at a high frequency of 20,000Hz (20,000 cycles/second, achieving 109 cycles in 1 day) using ultrasonic vibration. Using this technology, the fatigue properties of materials can be evaluated rapidly up to the gigacycle region.

Because ultrasonic fatigue testing is a special test method using the phenomenon of resonance, the number of factors influenced by temperature is extremely large, and it was difficult to designate and make a device follow all these factors. To solve this problem, the NIMS group carried out a detailed analysis of the factors which are influenced by temperature, reviewed the control method, and added/improved part design and sensors. The team also discovered factors which had been overlooked in conventional research by a process which enhanced the completeness of the device while conducting trial-and-error experiments, and succeeded in correcting those problems. As a result, it was possible to develop a completely new device incorporating a large number of special improvements, based on a commercial testing device. The developed device can realize high accuracy ultrasonic fatigue tests at a high temperature of 1000°C, and thus is capable of performing fatigue testing under environments similar to the service environments of jet engines and gas turbines, which are exposed to high frequency vibration at high temperature.

In demonstration tests, the results of fatigue tests performed with the device developed in this research were in good agreement with the comparison data (fatigue test results accumulated over a long period of several decades), showing the high reliability of the test results with the developed device. The development of a high temperature ultrasonic fatigue test device enabling testing up to 1000°C and confirmation of the reliability of the test results will contribute to improved reliability in jet engines and gas turbines, and is also expected to accelerate research and development of materials for use in high strength turbine blades.

The results of this research were presented on July 18 at the M&M 2011 Materials and Mechanics Conference of the Japan Society of Mechanical Engineers.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/index.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>