Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Success in Development of High Temperature, High Speed Metal Fatigue Test Device with 1000°C Heat Resistance

An Important Contribution to Securing the Safety of Jet Engines and Gas Turbines for Power Generation

A research group led by Dr. Yoshiyuki Furuya, a Senior Researcher of the Materials Reliability Unit, National Institute for Materials Science, succeeded in the development of a high temperature ultrasonic fatigue test technology which is capable of evaluating the metal fatigue properties for critical components under high temperature, high frequency vibration environments which closely resemble the interior of jet engines and gas turbines.

A research group led by Dr. Yoshiyuki Furuya, a Senior Researcher of the Materials Reliability Unit (Unit Director: Kazuhiro Kimura), National Institute for Materials Science (President: Sukekatsu Ushioda), succeeded in the development of a high temperature ultrasonic fatigue test technology which is capable of evaluating the metal fatigue properties for critical components under high temperature, high frequency vibration environments which closely resemble the interior of jet engines and gas turbines.

Turbine blades in jet engines and gas turbines are subject to resonance, which causes high speed vibration a frequency of several 1000Hz. In fatigue due to this vibration, the number of cycles exceeds 1 gigacycles (109, or 1 billion cycles). However, conventional fatigue tests are performed at a low frequency on the order of 10Hz (10 cycles per second, or 109 cycles in 3 years), and therefore require an extended test period. For this reason, evaluations of the fatigue properties of materials had been limited to around 107 cycles, which can be achieved in approximately 1 week.

In contrast, in this research, the NIMS Group conceived application of ultrasonic fatigue test technology, which is capable of realizing fatigue testing at a high frequency of 20,000Hz (20,000 cycles/second, achieving 109 cycles in 1 day) using ultrasonic vibration. Using this technology, the fatigue properties of materials can be evaluated rapidly up to the gigacycle region.

Because ultrasonic fatigue testing is a special test method using the phenomenon of resonance, the number of factors influenced by temperature is extremely large, and it was difficult to designate and make a device follow all these factors. To solve this problem, the NIMS group carried out a detailed analysis of the factors which are influenced by temperature, reviewed the control method, and added/improved part design and sensors. The team also discovered factors which had been overlooked in conventional research by a process which enhanced the completeness of the device while conducting trial-and-error experiments, and succeeded in correcting those problems. As a result, it was possible to develop a completely new device incorporating a large number of special improvements, based on a commercial testing device. The developed device can realize high accuracy ultrasonic fatigue tests at a high temperature of 1000°C, and thus is capable of performing fatigue testing under environments similar to the service environments of jet engines and gas turbines, which are exposed to high frequency vibration at high temperature.

In demonstration tests, the results of fatigue tests performed with the device developed in this research were in good agreement with the comparison data (fatigue test results accumulated over a long period of several decades), showing the high reliability of the test results with the developed device. The development of a high temperature ultrasonic fatigue test device enabling testing up to 1000°C and confirmation of the reliability of the test results will contribute to improved reliability in jet engines and gas turbines, and is also expected to accelerate research and development of materials for use in high strength turbine blades.

The results of this research were presented on July 18 at the M&M 2011 Materials and Mechanics Conference of the Japan Society of Mechanical Engineers.

Mikiko Tanifuji | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>



Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

More VideoLinks >>>