Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Success in developing groundbreaking electrolyte materials

Success in developing groundbreaking electrolyte materials
Researchers at National Institute for Materials Science (NIMS) have successfully developed two types of novel proton conducting oxide electrolytes for SOFCs, moving towards the commercialization of SOFCs.

Fuel Cell Nano-Materials Group (Leader: Enrico TRAVERSA), International Center for Materials Nanoarchitectonics (Director: Masakazu AONO) has successfully developed two types of novel proton conducting oxide electrolytes for solid oxide fuel cells (SOFCs). By applying these electrolytes, the commercialization of SOFCs operating in the intermediate temperature range, 500 to 650¡ÆC, has come into sight.

SOFCs are environmental-friendly and efficient energy production devices. Reducing the operating temperature of SOFCs below 700¡ÆC is needed for a wide practical application of these devices. Yttrium-doped barium zirconate (BZY) is now considered as an alternative to the oxygen-ion conductor electrolytes conventionally used in SOFCs due to its higher bulk proton conductivity at low temperatures. BZY has not been exploited until now despite its excellent chemical stability because, when prepared as a ceramic polycrystalline material, it suffers from difficult sintering and proton conductivity is decreased by grain boundaries, which have a blocking effect.

Fuel Cell Nano-Materials Group has successfully developed two types of novel materials which satisfy all the three requirements for electrolyte: ion conductivity, chemical stability and sinterability, at high levels.

... more about:
»BZY »Nano-Materials »NiO-BZY »SOFC »cell death

One is yttrium-doped barium zirconate with 10 mol% of praseodymium (BZPY). The addition of Pr improves the sinterability of BZY and dense samples are obtained after sintering at 1500¡ÆC for 8 hours. This material showed very high proton conductivity (above 0.01S/cm at 600¢ªC), comparable to the proton conductivity of BCZY, now proposed for proton conductor electrolyte, but with significantly better chemical stability, thereby resulting in realistic applicability in fuel cell devices.

The other material is indium-doped barium zirconate (BZI) on a NiO-BZY anode substrate. During sintering at 1450oC, a dense electrolyte film is formed and simultaneously indium evaporates, being substituted by yttrium. The final result is the achievement of a dense BZY electrolyte film on a NiO-BZY anode, which cannot be obtained at the same temperature with direct processing. The fuel cells using this electrolyte film showed the largest fuel cell performance, 0.169 W/cm2 at 600oC, ever reported for BZY-based electrolytes. The BZY film made by this method shows excellent chemical stability, indicating its potential for long-term operation.

These two materials are promising electrolyte materials for SOFC operating in the intermediate temperature range, 500 to 650¡ÆC, which allows reducing SOFC fabrication and operation costs, and thus accelerating their commercialization. The previous work of the group, published in Nature Materials on September 20th, introduced high-performance materials that show very high proton conductivity at even lower temperatures, but it was fabricated by using a special technology called pulsed laser deposition. In these new studies, high-performance electrolyte materials were obtained by simple co-pressing and subsequent sintering in the air, which is suitable for mass-production. This indicates the aforementioned results could accelerate the commercialization of SOFCs.

Mikiko Tanifuji | Research Asia Research News
Further information:

Further reports about: BZY Nano-Materials NiO-BZY SOFC cell death

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>