Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Reveals New Factor that could Limit the Life of Hybrid and Electric Car Batteries

13.12.2012
A new study of the batteries commonly used in hybrid and electric-only cars has revealed an unexpected factor that could limit the performance of batteries currently on the road.

Researchers led by Ohio State University engineers examined used car batteries and discovered that over time lithium accumulates beyond the battery electrodes – in the “current collector,” a sheet of copper which facilitates electron transfer between the electrodes and the car’s electrical system.

This knowledge could aid in improving design and performance of batteries, explained Bharat Bhushan, Ohio Eminent Scholar and the Howard D. Winbigler Professor of Mechanical Engineering.

“Our study shows that the copper current collector plays a role in the performance of the battery,” he said.

The study, which appears in a recent issue of the journal Scripta Materialia, reflects an ongoing collaboration between Bhushan and Suresh Babu, professor of materials science and engineering and director of the National Science Foundation Center for Integrative Materials Joining for Energy Applications, headquartered at the university. The team is trying to determine the factors that limit battery life.

Lithium-ion batteries are the rechargeable batteries used in most hybrid-electric cars and all-electric cars as well. Inside, lithium ions shuttle back and forth between the anode and cathode of the battery – to the anode when the battery is charging, and back to the cathode when the battery is discharging.

Previously, the researchers determined that, during aging of the battery, cyclable lithium permanently builds up on the surface of the anode, and the battery loses charge capacity.

This latest study revealed that lithium migrates through the anode to build up on the copper current collector as well.

“We didn’t set out to find lithium in the current collector, so you could say we accidentally discovered it, and how it got there is a bit of a mystery. As far as we know, nobody has ever expected active lithium to migrate inside the current collector,” Bhushan said.

Shrikant Nagpure, now postdoctoral researcher at Ohio State, carried out this research as a part of his doctoral degree. He examined batteries that were aged in collaboration with the university’s Center for Automotive Research, where colleagues Yann Guezennec and Giorgio Rizzoni have studied battery aging for several years, in collaboration with the automotive industry.

Key to the discovery of lithium in the current collector was collaboration between the Ohio State team and Gregory Downing, a research chemist at the National Institute of Standards and Technology and an expert on a technique called neutron depth profiling (NDP), a tool for impurity analysis in materials.

Previously, the researchers used NDP to study the cathodes and anodes of six off-the-shelf lithium-ion car batteries – one new battery and five batteries which they aged themselves in the laboratory – and found that lithium builds up on the anode surface over time.

To understand more about how these batteries degrade, Bhushan and his colleagues have been studying the batteries further, at various scales ranging from the millimeter (millionths of a meter) down to the nanometer (billionths of a meter) with different techniques.

In the NDP technique, researchers pass neutrons through a material and capture the charged particles that emerge from the fission reaction between neutrons and lithium in the electrodes. Since different chemical elements emit a certain signature set of particles with specific energies, NDP can reveal the presence of impurities in a material.

In this latest study, NDP detected the presence of lithium in the copper current collector from one of the aged batteries. The detection was measured as a ratio of the number of copper atoms in the collector to the number of lithium atoms that had collected there. The test yielded a ratio of up to 0.08 percent, or approximately one lithium atom per 1250 copper atoms in the collector.

That’s a small number, but high enough that it could conceivably affect the electrical performance of the current collector – and, in turn, the performance of a battery, Bhushan said. He hopes that battery makers will further investigate this phenomenon and use the information to design new materials that might prevent lithium from escaping the electrode material.

Next, he and his colleagues will study the impedance, or internal electrical resistance, of lithium-ion batteries on the nanoscale.

Funding for this study came from the Institute for Materials Research at Ohio State.

Contact: Bharat Bhushan, (614) 292-0651; Bhushan.2@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>