Stretching Old Material Yields New Results for Energy- and Environment-related Devices

Researchers at Virginia Tech in Blacksburg, Va. recently found a way to improve electricity generating fuel cells, potentially making them more efficient, powerful and less expensive. Specifically, they discovered a way to speed up the flow and filtering of water or ions, which are necessary for fuel cells to operate.

Simply put, the researchers stretched Nafion, a polymer electrolyte membrane, or PEM, commonly used in fuel cells and increased the speed at which it selectively filters substances from ions and water.

The resulting process could be important to a number of energy and environment-related applications such as any of several industrial processes that involve filtering, including improving batteries in cars, water desalination and even the production of artificial muscles for robots.

The journal Nature Materials published the results in its June 19 issue in the article, “Linear coupling of alignment with transport in a polymer electrolyte membrane,” by Jing Li, Jong Keun Park, Robert B. Moore and Louis A. Madsen, all with the chemistry department in the College of Science and the Macromolecules and Interfaces Institute at Virginia Tech.

“I got the idea for some of these experiments after I saw Bob Moore give a talk at the University of North Carolina about Nafion when I was a post-doc there working with liquid crystals,” said Madsen, an assistant professor of physical, polymer and materials chemistry who led the study.

In order to improve PEMs, Madsen and Virginia Tech Chemistry Professor Robert Moore studied exactly how water moves through Nafion at the molecular level and measured how changes in the structure of the material affected water flow. They found stretching it caused channels in the PEM material to align in the direction of the stretch, allowing water to flow through faster.

“Stretching drastically influences the degree of alignment,” said Madsen. “So the molecules move faster along the direction of the stretch, and in a very predictable way. These materials actually share some properties with liquid crystals–molecules that line up with each other and are used in every LCD television, projector and screen.”

“This is a very clever approach which demonstrates the advantages of interdisciplinary materials research and which may offer important benefits to both energy technologies and sustainability of our natural resources,” said Andy Lovinger, polymers program director in the National Science Foundation's Division of Materials Research, which funded the study.

Nafion was discovered in the 1960's and is made up of molecules that combine the non-stick and tough nature of Teflon with the conductive properties of an acid. It is one of many PEMs used to filter water and ions that the researchers say could benefit from the stretching process.

Media Contacts
Lisa Van Pay, NSF (703) 292-8796 lvanpay@nsf.gov
Susan Trulove, Virginia Tech (540) 231-5646 STrulove@vt.edu
Program Contacts
Andrew J. Lovinger, NSF (703) 292-4933 alovinge@nsf.gov
Principal Investigators
Louis Madsen, Virginia Tech (540) 231-1270 lmadsen@vt.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Media Contact

Lisa Van Pay EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors