Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sticking power: new adhesive earns patent, could find place in space

24.03.2011
A recently patented adhesive made by Kansas State University researchers could become a staple in every astronaut's toolbox.

The patent, "pH dependent adhesive peptides," was issued to the Kansas State University Research Foundation, a nonprofit corporation responsible for managing technology transfer activities of K-State. The patent covers an adhesive made from peptides -- a compound containing two or more amino acids that link together -- that increases in strength as moisture is removed.

It was created by John Tomich, professor of biochemistry, and Xiuzhi "Susan" Sun, professor of grain science and industry. Assisting in the research was Takeo Iwamoto, an adjunct professor in biochemistry, and Xinchun Shen, a former postdoctoral researcher.

"The adhesive we ended up developing was one that formed nanoscale fibrils that become entangled, sort of like Velcro. It has all these little hooks that come together," Tomich said. "It's a mechanical type of adhesion, though, not a chemical type like most commercial adhesives."

Because of its unusual properties, applications will most likely be outside the commercial sector, Tomich said.

For example, unlike most adhesives that become brittle as moisture levels decrease, the K-State adhesive's bond only becomes stronger. Because of this, it could be useful in low-moisture environments like outer space, where astronauts could use it to reattach tiles to a space shuttle.

Conversely, its deterioration from water could also serve a purpose.

"It could be used as a timing device or as a moisture detection device," Tomich said. "There could be a circuit or something that when the moisture got to a certain level, the adhesive would fail and break the circuit, sounding an alarm."

The project began nearly a decade ago as Sun and a postdoctal researcher were studying the adhesive properties of soybean proteins. Needing an instrument to synthesize protein peptides, Sun contacted Tomich.

Serendipitously, Tomich's lab had developed a peptide some time ago that had cement-like properties. Tomich said he knew it was unusual but had set it aside to pursue other interests.

"When Dr. Sun and I resurrected this protein, we didn't use the whole thing -- just a segment of it," Tomich said. "We isolated a certain segment where the cells are highly attracted to each other and form these fibrils."

Since their collaboration Tomich has taken the same sequence and changed the way it was designed. The new peptide, he said, will have an eye toward gene therapy.

Sun's lab is trying to optimize the sequence against adhesion, as well as study how peptide sequences influence adhesion properties and surface energy.

"I continue studying protein structures and functional properties in terms of adhesion -- folding, aggregation, surface energy and gelling properties -- so we can rationally design and develop biobased adhesives using plant proteins," she said.

The research foundation is working with the National Institute for Strategic Technology Acquisition and Commercialization to license the patent.

John Tomich | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>