Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst

18.05.2017

A tiny amount of squeezing or stretching can produce a big boost in catalytic performance, according to a new study led by scientists at Stanford University and SLAC National Accelerator Laboratory.

The discovery, published May 18 in Nature Communications, focuses on an industrial catalyst known as cerium oxide, or ceria, a spongy material commonly used in catalytic converters, self-cleaning ovens and various green-energy applications, such as fuel cells and solar water splitters.


This colorized transmission electron microscopy of ceria ultrathin film reveals that individual atoms (shown as dots) shift under intense pressure.

Credit: Sang?Chul?Lee

"Ceria stores and releases oxygen as needed, like a sponge," said study co-author Will Chueh, an assistant professor of materials science and engineering at Stanford and a faculty scientist at SLAC.

"We discovered that stretching and compressing ceria by a few percent dramatically increases its oxygen storage capacity. This finding overturns conventional wisdom about oxide materials and could lead to better catalysts."

Catalytic converters

Ceria has long been used in catalytic converters to help remove air pollutants from vehicle exhaust systems.

"In your car, ceria grabs oxygen from poisonous nitrogen oxide, creating harmless nitrogen gas," said study lead author Chirranjeevi Balaji Gopal, a former postdoctoral researcher at Stanford. "Ceria then releases the stored oxygen and uses it to convert lethal carbon monoxide into benign carbon dioxide."

Studies have shown that squeezing and stretching ceria causes nanoscale changes that affect its ability to store oxygen.

"The oxygen storage capacity of ceria is critical to its effectiveness as a catalyst," said study co-author Aleksandra Vojvodic, a former staff scientist at SLAC now at the University of Pennsylvania, who led the computational aspect of this work. "The theoretical expectation based on previous studies is that stretching ceria would increase its capacity to store oxygen, while compressing would lower its storage capacity."

To test this prediction, the research team grew ultrathin films of ceria, each just a few nanometers thick, on top of substrates made of different materials. This process subjected the ceria to stress equal to 10,000 times the Earth's atmosphere. This enormous stress caused the molecules of ceria to separate and squeeze together a distance of less than one nanometer.

Surprise results

Typically, materials like ceria relieve stress by forming defects in the film. But atomic-scale analysis revealed a surprise.

"Using high-resolution transmission electron microscopy to resolve the position of individual atoms, we showed that the films remain stretched or compressed without forming such defects, allowing the stress to remain in full force," said Robert Sinclair, a professor of materials science and engineering at Stanford.

To measure the impact of stress under real-world operating conditions, the researchers analyzed the ceria samples using the brilliant beams of X-ray light produced at Lawrence Berkeley National Laboratory's Advanced Light Source.

The results were even more surprising.

"We discovered that the strained films exhibited a fourfold increase in the oxygen storage capacity of ceria," Gopal said. "It doesn't matter if you stretch it or compress it. You get a remarkably similar increase."

The high-stress technique used by the research team is readily achievable through nanoengineering, Chueh added.

"This discovery has significant implications on how to nanoengineer oxide materials to improve catalytic efficiency for energy conversion and storage," he said. "It's important for developing solid oxide fuel cells and other green-energy technologies, including new ways to make clean fuels from carbon dioxide or water."

###

Other Stanford co-authors of the study are Max Garcia-Melchor, now at Trinity College Dublin (Ireland), and graduate students Sang Chul Lee, Zixuan Guan, Yezhou Shi and Matteo Monti. Additional co-authors are Andrey Shavorskiy of Lund University (Sweden) and Hendrik Bluhm of Lawrence Berkeley National Laboratory.

Media Contact

Mark Shwartz
mshwartz@stanford.edu
650-723-9296

 @stanford

http://news.stanford.edu/ 

Mark Shwartz | EurekAlert!

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>