Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst

18.05.2017

A tiny amount of squeezing or stretching can produce a big boost in catalytic performance, according to a new study led by scientists at Stanford University and SLAC National Accelerator Laboratory.

The discovery, published May 18 in Nature Communications, focuses on an industrial catalyst known as cerium oxide, or ceria, a spongy material commonly used in catalytic converters, self-cleaning ovens and various green-energy applications, such as fuel cells and solar water splitters.


This colorized transmission electron microscopy of ceria ultrathin film reveals that individual atoms (shown as dots) shift under intense pressure.

Credit: Sang?Chul?Lee

"Ceria stores and releases oxygen as needed, like a sponge," said study co-author Will Chueh, an assistant professor of materials science and engineering at Stanford and a faculty scientist at SLAC.

"We discovered that stretching and compressing ceria by a few percent dramatically increases its oxygen storage capacity. This finding overturns conventional wisdom about oxide materials and could lead to better catalysts."

Catalytic converters

Ceria has long been used in catalytic converters to help remove air pollutants from vehicle exhaust systems.

"In your car, ceria grabs oxygen from poisonous nitrogen oxide, creating harmless nitrogen gas," said study lead author Chirranjeevi Balaji Gopal, a former postdoctoral researcher at Stanford. "Ceria then releases the stored oxygen and uses it to convert lethal carbon monoxide into benign carbon dioxide."

Studies have shown that squeezing and stretching ceria causes nanoscale changes that affect its ability to store oxygen.

"The oxygen storage capacity of ceria is critical to its effectiveness as a catalyst," said study co-author Aleksandra Vojvodic, a former staff scientist at SLAC now at the University of Pennsylvania, who led the computational aspect of this work. "The theoretical expectation based on previous studies is that stretching ceria would increase its capacity to store oxygen, while compressing would lower its storage capacity."

To test this prediction, the research team grew ultrathin films of ceria, each just a few nanometers thick, on top of substrates made of different materials. This process subjected the ceria to stress equal to 10,000 times the Earth's atmosphere. This enormous stress caused the molecules of ceria to separate and squeeze together a distance of less than one nanometer.

Surprise results

Typically, materials like ceria relieve stress by forming defects in the film. But atomic-scale analysis revealed a surprise.

"Using high-resolution transmission electron microscopy to resolve the position of individual atoms, we showed that the films remain stretched or compressed without forming such defects, allowing the stress to remain in full force," said Robert Sinclair, a professor of materials science and engineering at Stanford.

To measure the impact of stress under real-world operating conditions, the researchers analyzed the ceria samples using the brilliant beams of X-ray light produced at Lawrence Berkeley National Laboratory's Advanced Light Source.

The results were even more surprising.

"We discovered that the strained films exhibited a fourfold increase in the oxygen storage capacity of ceria," Gopal said. "It doesn't matter if you stretch it or compress it. You get a remarkably similar increase."

The high-stress technique used by the research team is readily achievable through nanoengineering, Chueh added.

"This discovery has significant implications on how to nanoengineer oxide materials to improve catalytic efficiency for energy conversion and storage," he said. "It's important for developing solid oxide fuel cells and other green-energy technologies, including new ways to make clean fuels from carbon dioxide or water."

###

Other Stanford co-authors of the study are Max Garcia-Melchor, now at Trinity College Dublin (Ireland), and graduate students Sang Chul Lee, Zixuan Guan, Yezhou Shi and Matteo Monti. Additional co-authors are Andrey Shavorskiy of Lund University (Sweden) and Hendrik Bluhm of Lawrence Berkeley National Laboratory.

Media Contact

Mark Shwartz
mshwartz@stanford.edu
650-723-9296

 @stanford

http://news.stanford.edu/ 

Mark Shwartz | EurekAlert!

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>