Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stacking 2-D materials produces surprising results

17.05.2013
New experiments reveal previously unseen effects, could lead to new kinds of electronics and optical devices.

Graphene has dazzled scientists, ever since its discovery more than a decade ago, with its unequalled electronic properties, its strength and its light weight. But one long-sought goal has proved elusive: how to engineer into graphene a property called a band gap, which would be necessary to use the material to make transistors and other electronic devices.

Now, new findings by researchers at MIT are a major step toward making graphene with this coveted property. The work could also lead to revisions in some theoretical predictions in graphene physics.

The new technique involves placing a sheet of graphene — a carbon-based material whose structure is just one atom thick — on top of hexagonal boron nitride, another one-atom-thick material with similar properties. The resulting material shares graphene’s amazing ability to conduct electrons, while adding the band gap necessary to form transistors and other semiconductor devices.

The work is described in a paper in the journal Science co-authored by Pablo Jarillo-Herrero, the Mitsui Career Development Assistant Professor of Physics at MIT, Professor of Physics Ray Ashoori, and 10 others.

“By combining two materials,” Jarillo-Herrero says, “we created a hybrid material that has different properties than either of the two.”

Graphene is an extremely good conductor of electrons, while boron nitride is a good insulator, blocking the passage of electrons. “We made a high-quality semiconductor by putting them together,” Jarillo-Herrero explains. Semiconductors, which can switch between conducting and insulating states, are the basis for all modern electronics.

To make the hybrid material work, the researchers had to align, with near perfection, the atomic lattices of the two materials, which both consist of a series of hexagons. The size of the hexagons (known as the lattice constant) in the two materials is almost the same, but not quite: Those in boron nitride are 1.8 percent larger. So while it is possible to line the hexagons up almost perfectly in one place, over a larger area the pattern goes in and out of register.

At this point, the researchers say they must rely on chance to get the angular alignment for the desired electronic properties in the resulting stack. However, the alignment turns out to be correct about one time out of 15, they say.

“The qualities of the boron nitride bleed over into the graphene,” Ashoori says. But what’s most “spectacular,” he adds, is that the properties of the resulting semiconductor can be “tuned” by just slightly rotating one sheet relative to the other, allowing for a spectrum of materials with varied electronic characteristics.

Others have made graphene into a semiconductor by etching the sheets into narrow ribbons, Ashoori says, but such an approach substantially degrades graphene’s electrical properties. By contrast, the new method appears to produce no such degradation.

The band gap created so far in the material is smaller than that needed for practical electronic devices; finding ways of increasing it will require further work, the researchers say.

“If … a large band gap could be engineered, it could have applications in all of digital electronics,” Jarillo-Herrero says. But even at its present level, he adds, this approach could be applied to some optoelectronic applications, such as photodetectors.

The results “surprised us pleasantly,” Ashoori says, and will require some explanation by theorists. Because of the difference in lattice constants of the two materials, the researchers had predicted that the hybrid’s properties would vary from place to place. Instead, they found a constant, and unexpectedly large, band gap across the whole surface.

In addition, Jarillo-Herrero says, the magnitude of the change in electrical properties produced by putting the two materials together “is much larger than theory predicts.”

The MIT team also observed an interesting new physical phenomenon. When exposed to a magnetic field, the material exhibits fractal properties — known as a Hofstadter butterfly energy spectrum — that were described decades ago by theorists, but thought impossible in the real world. There is intense research in this area; two other research groups also report on these Hofstadter butterfly effects this week in the journal Nature.

The research included postdocs Ben Hunt and Andrea Young and graduate student Javier Sanchez-Yamagishi, as well as six other researchers from the University of Arizona, the National Institute for Materials Science in Tsukuba, Japan, and Tohoku University in Japan. The work was funded by the U.S. Department of Energy, the Gordon and Betty Moore Foundation and the National Science Foundation.

Written by: David L. Chandler, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>