Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Squid skin' metamaterials project yields vivid color display

16.09.2014

Rice lab creates RGB color display technology with aluminum nanorods

The quest to create artificial "squid skin" -- camouflaging metamaterials that can "see" colors and automatically blend into the background -- is one step closer to reality, thanks to a breakthrough color-display technology unveiled this week by Rice University's Laboratory for Nanophotonics (LANP).


Rice University's new color display technology is capable of producing dozens of colors, including rich red, green and blue tones comparable to those found in high-definition LCD displays.

CREDIT: J. Olson/Rice University

The new full-color display technology uses aluminum nanoparticles to create the vivid red, blue and green hues found in today's top-of-the-line LCD televisions and monitors. The technology is described in a new study that will be posted online this week in the Early Edition of the Proceedings of the National Academy of Sciences (PNAS).

The breakthrough is the latest in a string of recent discoveries by a Rice-led team that set out in 2010 to create metamaterials capable of mimicking the camouflage abilities of cephalopods -- the family of marine creatures that includes squid, octopus and cuttlefish.

... more about:
»LCD »PNAS »camouflage »cephalopods »metamaterials »skin »tune

"Our goal is to learn from these amazing animals so that we could create new materials with the same kind of distributed light-sensing and processing abilities that they appear to have in their skins," said LANP Director Naomi Halas, a co-author of the PNAS study. She is the principal investigator on a $6 million Office of Naval Research grant for a multi-institutional team that includes marine biologists Roger Hanlon of the Marine Biological Laboratory in Woods Hole, Mass., and Thomas Cronin of the University of Maryland, Baltimore County.

"We know cephalopods have some of the same proteins in their skin that we have in our retinas, so part of our challenge, as engineers, is to build a material that can 'see' light the way their skin sees it, and another challenge is designing systems that can react and display vivid camouflage patterns," Halas said.

LANP's new color display technology delivers bright red, blue and green hues from five-micron-square pixels that each contains several hundred aluminum nanorods. By varying the length of the nanorods and the spacing between them, LANP researchers Stephan Link and Jana Olson showed they could create pixels that produced dozens of colors, including rich tones of red, green and blue that are comparable to those found in high-definition LCD displays.

"Aluminum is useful because it's compatible with microelectronic production methods, but until now the tones produced by plasmonic aluminum nanorods have been muted and washed out," said Link, associate professor of chemistry at Rice and the lead researcher on the PNAS study. "The key advancement here was to place the nanorods in an ordered array."

Olson said the array setup allowed her to tune the pixel's color in two ways, first by varying the length of the nanorods and second by adjusting the length of the spaces between nanorods.

"This arrangement allowed us to narrow the output spectrum to one individual color instead of the typical muted shades that are usually produced by aluminum nanoparticles," she said.

Olson's five-micron-square pixels are about 40 times smaller than the pixels used in commercial LCD displays. To make the pixels, she used aluminum nanorods that each measured about 100 nanometers long by 40 nanometers wide. She used electron-beam deposition to create arrays -- regular arrangements of nanorods -- in each pixel.

She was able to fine-tune the color produced by each pixel by using theoretical calculations by Rice physicists Alejandro Manjavacas, a postdoctoral researcher, and Peter Nordlander, professor of physics and astronomy.

"Alejandro created a detailed model of the far-field plasmonic interactions between the nanorods," Olson said. "That proved very important because we could use that to dial in the colors very precisely."

Halas and Link said the research team hopes to create an LCD display that uses many of the same components found in today's displays, including liquid crystals, polarizers and individually addressable pixels. The photonic aluminum arrays would be used in place of the colored dyes that are found in most commercial displays. Unlike dyes, the arrays won't fade or bleach after prolonged exposure to light, and the inherent directionality of the nanorods provides another advantage.

"Because the nanorods in each array are aligned in the same direction, our pixels produce polarized light," he said. "This means we can do away with one polarizer in our setup, and it also gives us an extra knob that we can use to tune the output from these arrays. It could be useful in a number of ways."

Link and Halas said they hope to further develop the display technology and eventually to combine it with other new technologies that the squid skin team has developed both for sensing light and for displaying patterns on large polymer sheets. For example, Halas and colleagues published a study in Advanced Materials in August about an aluminum-based CMOS-compatible photodetector technology for color sensing. In addition, University of Illinois at Urbana-Champaign co-principal investigator John Rogers and colleagues published a proof-of-concept study in PNAS in August about new methods for creating flexible black-and-white polymer displays that can change color to match their surroundings.

"We hope to eventually bring all of these technologies together to create a new material that can sense light in full color and react with full-color camouflage displays," Halas said.

###

Co-authors of the color display study in PNAS include Lifei Liu, Wei-Shun Chang, Benjamin Foerster, Nicholas King and Mark Knight, all of Rice.

High-resolution IMAGES are available for download at:

http://news.rice.edu/wp-content/uploads/2014/09/0915_COLOR-array-lg.jpg
CAPTION: Rice University's new color display technology is capable of producing dozens of colors, including rich red, green and blue tones comparable to those found in high-definition LCD displays.
CREDIT: J. Olson/Rice University

http://news.rice.edu/wp-content/uploads/2014/09/0915_COLOR-SEM1-lg.jpg
CAPTION: Each pixel in Rice University's new color display technology contains an array with hundreds of aluminum nanorods.
CREDIT: J. Olson/Rice University

http://news.rice.edu/wp-content/uploads/2014/09/0915_COLOR-detail-lg.jpg
CAPTION: Rice researchers tune the color output of each array both by varying the length of the nanorods and by adjusting the length of the spaces between nanorods.
CREDIT: J. Olson/Rice University

http://news.rice.edu/wp-content/uploads/2014/09/0915_COLOR-group-lg.jpg
CAPTION: The Rice University research team that developed a new nanophotonic color-display technology includes (back row, from left) Alejandro Manjavacas, Lifei Liu, Nicholas King, Jana Olson and Wei-Shun Chang and (front row, from left) Peter Nordlander, Stephan Link and Naomi Halas.
CREDIT: Jeff Fitlow/Rice University

http://news.rice.edu/wp-content/uploads/2014/09/0915_COLOR-link-lg.jpg
CAPTION: Stephan Link
CREDIT: Jeff Fitlow/Rice University

http://news.rice.edu/wp-content/uploads/2014/09/0915_COLOR-halas-lg.jpg
CAPTION: Naomi Halas
CREDIT: Jeff Fitlow/Rice University

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations on Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

David Ruth | Eurek Alert!

Further reports about: LCD PNAS camouflage cephalopods metamaterials skin tune

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>