Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spallation Neutron Source First of Its Kind to Reach Megawatt Power

01.10.2009
The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier.

"Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE’s Office of Science.

SNS operators at DOE's Oak Ridge National Laboratory pushed the controls past the megawatt mark on September 18 as the SNS ramped up for its latest operational run.

"The attainment of one megawatt in beam power symbolizes the advancement in analytical resources that are now available to the neutron scattering community through the SNS," said ORNL Director Thom Mason, who led the SNS project during its construction. "This is a great achievement not only for DOE and Oak Ridge National Laboratory, but for the entire community of science."

Before the SNS, the world's spallation neutron sources operated in the hundred-kilowatt range. The SNS actually became a world-record holder in August 2007 when it reached 160 kilowatts, earning it an entry in the Guinness Book of World Records as the world's most powerful pulsed spallation neutron source.

Beam power isn't merely a numbers game. A more powerful beam means more neutrons are spalled from SNS's mercury target. For the researcher, the difference in beam intensity is comparable to the ability to see with a car's headlights versus a flashlight. More neutrons also enhance scientific opportunities, including flexibility for smaller samples and for real-time studies at shorter time scales. For example, experiments will be possible that use just one pulse of neutrons to illuminate the dynamics of scientific processes.

Eventually, the SNS will reach its design power of 1.4 megawatts. The gradual increase of beam power has been an ongoing process since the SNS was completed and activated in late April 2006.

In the meantime, scientists have been performing cutting-edge experiments and materials analysis as its eventual suite of 25 instruments comes on line. As DOE Office of Science user facilities, the SNS and its companion facility, the High Flux Isotope Reactor, host researchers from around the world for neutron scattering experiments.

ORNL is managed by UT-Battelle for the Department of Energy.

Bill Cabage | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>