Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Spacetex" project takes functional textiles into outer space

14.04.2014

On 28 May 2014, the German ESA astronaut Dr. Alexander Gerst will take off from the cosmodrome in Baikonur/Kazakhstan, bound for the International Space Station (ISS). During the six-month "Blue Dot" mission, Dr. Gerst will be responsible for almost 40 different experiments including the "Spacetex" project, the first clothing physiology experiments to be carried out in a weightless environment. It is hoped that the “Spacetex” project will shed new light on the interaction between body, clothing and climate.

Experiments in zero gravity help with the development of innovative textiles for extreme conditions on Earth


The International Space Station ISS orbits the Earth at a height of 400 kilometres and a speed of 28,000 km/hr.

©NASA


The "Spacetex" 2014 project team (l. to r.):Eleni Antoniadou(ESA),Dr.Beringer(Hohenstein Institute),Prof.Gunga(Charité),Claudia Philpot(DLR), Hans-Jürgen Hübner(Schoeller Textil AG), Dr.Gerst (ESA).

©Hohenstein

The "Spacetex" project and its aims

- Germany)Germany) are expecting unique results from the joint undertaking. It is hoped that the tests deliver essential information for developing new textile products for use in extreme climatic and physiological conditions on Earth.

Equally as important, the data obtained should help optimise astronauts' clothing for future space voyages and long-term missions such as the approximately three-year voyage to Mars that is planned for 2030.

The challenges of zero gravity

Project leader Dr. Jan Beringer of the Hohenstein Institute sees great potential for improving the comfort and other performance features of garments in space: "Among other things, the lack of gravity affects the way body heat and sweat are transported through clothing that is worn next to the skin. To ensure that the body's cooling mechanism is still properly maintained, textiles have to be specially adapted for use in space.” Industrial researcher Dr. Beringer, who is listed as the project’s Principal Investigator (PI), believes performance-based textile functions will be key in future developments. These include, for example, antimicrobial textile finishes to minimise the odour formation that occurs as sweat is broken down by bacteria.

Wearing tests by astronaut Dr. Alexander Gerst

At the end of February, Dr. Jan Beringer and Prof. Dr. Hanns-Christian Gunga of the Center of Space Medicine at the Charité in Berlin, who is also Principal Investigator (PI) in the project, attended Dr. Alexander Gerst's training for the project at the European Astronaut Centre (EAC) in Cologne. In preparation for his duties while in orbit, Dr.Gerst performed four intensive treadmill workouts on four separate days during his preflight training. During two of the training sessions, he wore functional underwear made
of special polyester. Dr. Gerst wore a conventional cotton set of underwear, consisting of a T-shirt and shorts, for the remaining two sessions. Using a questionnaire, the 37- year-old from Künzelsau assessed how well body heat and sweat were wicked away from his body by the clothing systems. Dr. Alexander Gerst will also give his subjective impressions immediately after the training sessions in space; this will provide the first important comparative data for the "Spacetex" project.

Space-proven for extreme situations on Earth

It is expected that the data from the Dr. Gerst experiments will aid in Prof. Dr. Hanns-Christian Gunga’s reserach. For years, Gunga has been studying the effects that weightlessness in space, or in extreme climatic conditions on Earth, has on the human body. "In zero gravity, the breakdown of muscle and bone tissue begins very quickly. To counteract that degeneration, working on special training equipment is extremely important for astronauts. During that process, the body gives off heat just as it does on Earth, and tries to cool itself down by releasing and evaporating sweat. However, due to the lack of gravity and therefore of a flow of heat (convection), neither the body heat nor the sweat are transported away onto clothing or into the environment as they are on Earth." Instead, the heat envelops the body almost like an aura. Especially if clothing is loose-fitting, sweat remains stubbornly on the skin. This means the cooling effect on the body is lost and the training imparts greater physiological strain than it does on Earth, even for very fit astronauts.

In addition to their potential use in space, space-proven textiles are also of great interest when developing textiles for extreme conditions here on Earth. For Hans-Jürgen Hübner, Schoeller Textil AG, this is an important reason why the textile manufacturer is involved in this industry-funded research project: "We will feed the findings from the "Spacetex" project into our product development and optimisation work. Future astronauts will benefit from this work. We’ll also make sure that people here on Earth who push the limits of their physical endurance or have to deliver peak performance in extreme conditions benefit as well. That includes, of course, athletes of all kinds but also firefighters, catastrophe relief workers and members of the armed forces."

Experiments using the Hohenstein skin model

Alongside the subjective wear tests, objective evaluations of moisture and heat management are another vital data source for PI Dr. Beringer. The functional and cotton textiles were subjected to an extensive series of tests on the Hohenstein skin model that simulates the thermoregulatory system of human skin. Various clothing physiology parameters such as water vapour resistance, which indicates breathability, and thermal insulation were measured in standardised climatic conditions and normal gravity. Because of the great weight of the measuring equipment, it is impossible to bring it on board the ISS.

In order to be able to take comparative measurements in micro-gravity, the Hohenstein Institute is developing a special version of the Hohenstein skin model that could possibly be expected to be used in 2016 on board an Airbus A300 during the parabolic flights. During these flights, the aircraft climbs steeply out of horizontal flight, reduces the thrust of the turbines and flies a parabola (ellipse) during which weightlessness is experienced for about 22 seconds. Altogether, such a flight offers about 35 minutes of weightlessness - alternating with normal and twice the normal gravitational force - for researchers to use during experiments.

Odour analysis and microbiological tests

After the astronaut testing in Cologne, the test textiles were packed in airtight containers and later tested at the Hohenstein Institute for odour formation and number of residual bacteria. So that similar tests can be carried out on the textiles after the training sessions in space, Dr. Alexander Gerst will return with them, again in air-tight packaging, in November 2014.

Little Tenax tubes will serve as the "odour trap". Special polymers will absorb and preserve the odour molecules so that they can be counted after the mission using the GC/MS (gas chromatography mass spectrometer). In microbiological tests, the Hohenstein scientists will again count the number of bacteria adhering to the textile and compare the figures. As with the wearing comfort tests, the findings for functional and cotton textiles in normal and micro-gravity will be compared.

Always up-to-date

The project partners provide regular updates on various milestones during the "Spacetex" project. As of 1 April 2014 interim results and more information are provided on a special website www.spacetex-project.de. Further information can be found at the following links for "Blue Dot" mission and astronaut Dr. Alexander Gerst.

Additional information:

"Blue Dot" mission
Biography of Dr. Alexander Gerst

Contact:
Hohenstein Institute
Dr. Jan Beringer
j.beringer@hohenstein.de
www.hohenstein.com

Schoeller Textil AG
Dagmar Signer
dagmar_signer@schoeller-textiles.com
www.schoeller-textiles.com

Weitere Informationen:

http://www.hohenstein.com
http://www.schoeller-textiles.com
http://www.spacetex-project.de

Andrea Höra | idw - Informationsdienst Wissenschaft

Further reports about: Earth Textil astronauts clothing conditions cotton heat skin sweat textile textiles weightlessness

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>