Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Spacetex" project takes functional textiles into outer space

14.04.2014

On 28 May 2014, the German ESA astronaut Dr. Alexander Gerst will take off from the cosmodrome in Baikonur/Kazakhstan, bound for the International Space Station (ISS). During the six-month "Blue Dot" mission, Dr. Gerst will be responsible for almost 40 different experiments including the "Spacetex" project, the first clothing physiology experiments to be carried out in a weightless environment. It is hoped that the “Spacetex” project will shed new light on the interaction between body, clothing and climate.

Experiments in zero gravity help with the development of innovative textiles for extreme conditions on Earth


The International Space Station ISS orbits the Earth at a height of 400 kilometres and a speed of 28,000 km/hr.

©NASA


The "Spacetex" 2014 project team (l. to r.):Eleni Antoniadou(ESA),Dr.Beringer(Hohenstein Institute),Prof.Gunga(Charité),Claudia Philpot(DLR), Hans-Jürgen Hübner(Schoeller Textil AG), Dr.Gerst (ESA).

©Hohenstein

The "Spacetex" project and its aims

- Germany)Germany) are expecting unique results from the joint undertaking. It is hoped that the tests deliver essential information for developing new textile products for use in extreme climatic and physiological conditions on Earth.

Equally as important, the data obtained should help optimise astronauts' clothing for future space voyages and long-term missions such as the approximately three-year voyage to Mars that is planned for 2030.

The challenges of zero gravity

Project leader Dr. Jan Beringer of the Hohenstein Institute sees great potential for improving the comfort and other performance features of garments in space: "Among other things, the lack of gravity affects the way body heat and sweat are transported through clothing that is worn next to the skin. To ensure that the body's cooling mechanism is still properly maintained, textiles have to be specially adapted for use in space.” Industrial researcher Dr. Beringer, who is listed as the project’s Principal Investigator (PI), believes performance-based textile functions will be key in future developments. These include, for example, antimicrobial textile finishes to minimise the odour formation that occurs as sweat is broken down by bacteria.

Wearing tests by astronaut Dr. Alexander Gerst

At the end of February, Dr. Jan Beringer and Prof. Dr. Hanns-Christian Gunga of the Center of Space Medicine at the Charité in Berlin, who is also Principal Investigator (PI) in the project, attended Dr. Alexander Gerst's training for the project at the European Astronaut Centre (EAC) in Cologne. In preparation for his duties while in orbit, Dr.Gerst performed four intensive treadmill workouts on four separate days during his preflight training. During two of the training sessions, he wore functional underwear made
of special polyester. Dr. Gerst wore a conventional cotton set of underwear, consisting of a T-shirt and shorts, for the remaining two sessions. Using a questionnaire, the 37- year-old from Künzelsau assessed how well body heat and sweat were wicked away from his body by the clothing systems. Dr. Alexander Gerst will also give his subjective impressions immediately after the training sessions in space; this will provide the first important comparative data for the "Spacetex" project.

Space-proven for extreme situations on Earth

It is expected that the data from the Dr. Gerst experiments will aid in Prof. Dr. Hanns-Christian Gunga’s reserach. For years, Gunga has been studying the effects that weightlessness in space, or in extreme climatic conditions on Earth, has on the human body. "In zero gravity, the breakdown of muscle and bone tissue begins very quickly. To counteract that degeneration, working on special training equipment is extremely important for astronauts. During that process, the body gives off heat just as it does on Earth, and tries to cool itself down by releasing and evaporating sweat. However, due to the lack of gravity and therefore of a flow of heat (convection), neither the body heat nor the sweat are transported away onto clothing or into the environment as they are on Earth." Instead, the heat envelops the body almost like an aura. Especially if clothing is loose-fitting, sweat remains stubbornly on the skin. This means the cooling effect on the body is lost and the training imparts greater physiological strain than it does on Earth, even for very fit astronauts.

In addition to their potential use in space, space-proven textiles are also of great interest when developing textiles for extreme conditions here on Earth. For Hans-Jürgen Hübner, Schoeller Textil AG, this is an important reason why the textile manufacturer is involved in this industry-funded research project: "We will feed the findings from the "Spacetex" project into our product development and optimisation work. Future astronauts will benefit from this work. We’ll also make sure that people here on Earth who push the limits of their physical endurance or have to deliver peak performance in extreme conditions benefit as well. That includes, of course, athletes of all kinds but also firefighters, catastrophe relief workers and members of the armed forces."

Experiments using the Hohenstein skin model

Alongside the subjective wear tests, objective evaluations of moisture and heat management are another vital data source for PI Dr. Beringer. The functional and cotton textiles were subjected to an extensive series of tests on the Hohenstein skin model that simulates the thermoregulatory system of human skin. Various clothing physiology parameters such as water vapour resistance, which indicates breathability, and thermal insulation were measured in standardised climatic conditions and normal gravity. Because of the great weight of the measuring equipment, it is impossible to bring it on board the ISS.

In order to be able to take comparative measurements in micro-gravity, the Hohenstein Institute is developing a special version of the Hohenstein skin model that could possibly be expected to be used in 2016 on board an Airbus A300 during the parabolic flights. During these flights, the aircraft climbs steeply out of horizontal flight, reduces the thrust of the turbines and flies a parabola (ellipse) during which weightlessness is experienced for about 22 seconds. Altogether, such a flight offers about 35 minutes of weightlessness - alternating with normal and twice the normal gravitational force - for researchers to use during experiments.

Odour analysis and microbiological tests

After the astronaut testing in Cologne, the test textiles were packed in airtight containers and later tested at the Hohenstein Institute for odour formation and number of residual bacteria. So that similar tests can be carried out on the textiles after the training sessions in space, Dr. Alexander Gerst will return with them, again in air-tight packaging, in November 2014.

Little Tenax tubes will serve as the "odour trap". Special polymers will absorb and preserve the odour molecules so that they can be counted after the mission using the GC/MS (gas chromatography mass spectrometer). In microbiological tests, the Hohenstein scientists will again count the number of bacteria adhering to the textile and compare the figures. As with the wearing comfort tests, the findings for functional and cotton textiles in normal and micro-gravity will be compared.

Always up-to-date

The project partners provide regular updates on various milestones during the "Spacetex" project. As of 1 April 2014 interim results and more information are provided on a special website www.spacetex-project.de. Further information can be found at the following links for "Blue Dot" mission and astronaut Dr. Alexander Gerst.

Additional information:

"Blue Dot" mission
Biography of Dr. Alexander Gerst

Contact:
Hohenstein Institute
Dr. Jan Beringer
j.beringer@hohenstein.de
www.hohenstein.com

Schoeller Textil AG
Dagmar Signer
dagmar_signer@schoeller-textiles.com
www.schoeller-textiles.com

Weitere Informationen:

http://www.hohenstein.com
http://www.schoeller-textiles.com
http://www.spacetex-project.de

Andrea Höra | idw - Informationsdienst Wissenschaft

Further reports about: Earth Textil astronauts clothing conditions cotton heat skin sweat textile textiles weightlessness

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>