Space tech helps to reach long-jump world record

In spring 2004, ESA’s Technology Transfer Programme (TTP) technology broker MST Aerospace met with Wojtek Czyz and his trainer to perform a pre-screening of the most crucial elements of the prosthesis used by Czyz. Having lost part of his left leg three years before in a sports accident, he now uses a prosthesis in two athletic disciplines: long jump and sprint competitions.

“The objective was to see how to improve his performance, and we found the most important problem was related to a connection angle, the so-called L-bracket, between the knee joint and the foot module,” explains Dr Werner Dupont, MST Aerospace Managing Director.

“In collaboration with the German company ISATEC, we developed a new L-bracket using materials originating from the Alpha Magnetic Spectrometer (AMS), an instrument that will be mounted on the International Space Station to study extraterrestrial anti-matter, matter and missing matter.”

The advantage of these space materials is that they are extremely strong and at the same time lighter than conventional products available, both important advantages for top athletes’ performance. The problem with Czyz’ previous prosthesis was that it tended to break when he performed to the maximum of his capacity.

At the previous Paralympics Games in Athens Czyz competed with a space-tech enhanced prosthetic leg and won a gold medal in three disciplines: 100 m sprint, 200 m sprint and long jump.

Following this success, MST and ISATEC, a German engineering company dealing with light materials, continued to work on improving the prosthesis. In a series of investigations undertaken by MST, including a number of advanced calculations on the dynamic performance of the materials done by ISATEC, a single-part foot module made in carbon fibre reinforced plastics proved to be the most promising solution for a sprint prosthesis.

For the long jump discipline, the previous design consisting of an L-bracket and a foot module was proven to be the most efficient.

“We first started working on improving the prosthesis for the sprint discipline, and then further improved the long jump prosthesis as well,” continues Dupont.

“This latest development turned out to be a great success at the Paralympics 2008, and helped Wojtek Czyz beat the world record by an incredible 27 cm.”

“The use of lighter and extremely strong space materials in the development of new prostheses for top athletes has proven its worth both in Athens in 2004 and now again in Beijing in 2008. The next step, which we are already looking into with our partners, is to use this expertise for similar developments of prostheses for other disabled people.”

Media Contact

Frank Salzgeber alfa

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors