Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar energy: A richer harvest on the horizon

30.08.2013
Theoretical simulations reveal that layered semiconductors with magnetic interfaces are potent catalysts for solar energy capture and conversion

Semiconductor nanostructures are poised to play a big role in future solar-powered hydrogen generation systems, according to a new study by researchers at the A*STAR Institute of High Performance Computing1. Hui Pan and Yong-Wei Zhang report that model interfaces made from gallium nitride (GaN) and zinc oxide (ZnO) semiconductors have tunable magnetic and light-harvesting capabilities — factors that can greatly improve the photocatalytic transformation of water into hydrogen fuel.


Semiconductors fabricated into stacked, nanometer-thin layers (left, schematic illustration; right, atomic structure) can harvest solar energy with striking efficiency.

© 2012 Elsevier

Most photoelectrochemical cells use titanium dioxide electrodes to absorb light and split water molecules into hydrogen and oxygen gas. But because this mineral has a large bandgap — a measure of energy needed to initiate photoreactions — these devices respond only to a tiny fraction of the solar spectrum. A promising way to boost this efficiency is with ‘superlattice’ materials that stack two different semiconductors into alternate, nanometer-thin layers.

The two-dimensional channels that emerge from superlattices resemble conductive nanowires for swift charge-carrier movement. Bandgaps in these hetero-nanostructures have a demonstrated dependence on semiconductor composition and layer thickness.

Pan and Zhang investigated superlattices based on stacked GaN and ZnO layers, two semiconductors with similar electronic and structural properties that are widely used in optoelectronic devices. Using density functional theory calculations, they optimized a periodic GaN–ZnO model superlattice (see image). These computations, which describe the charge and electron spin states of materials, showed that the two semiconductor layers formed crystalline nanowire arrangements with no magnetic characteristics.

The duo then systematically introduced small defects — atomic substitutions that slightly disrupt semiconductor crystallinity — into the GaN–ZnO superlattice. To Pan and Zhang’s surprise, they observed significant magnetism at several types of defect interface.

According to Pan, this extraordinary activity is due to ‘polar discontinuities’ that form when positively charged defects partially neutralize negative charges at Ga–O interface points. Unpaired electrons then accumulate around Zn–N connections and generate magnetic forces that can boost charge separation and mobility during the reaction known as photocatalysis.

The researchers also found that engineered polar discontinuities could significantly alter semiconductor bandgaps by generating intermediate energy levels. These zones act as ‘stepping stones’ that make it easier for photons, or light-transmitting particles, to excite electrons for water-splitting reactions.

Pan notes that once these intriguing properties of GaN–ZnO nanostructures are verified through laboratory studies, the materials may find application in energy-harvesting solar cells. “If this design proves efficient in both theory and experiment, we would then look for commercial applications by collaborating with industry,” he says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Pan, H. & Zhang, Y.-W. GaN/ZnO superlattice nanowires as photocatalyst for hydrogen generation: A first-principles study on electronic and magnetic properties. Nano Energy 1, 488–493 (2012)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6725
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>