Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to soften a diamond

29.11.2010
It is the hardest material in the world, and yet it can not only be used to cut other materials, but can be machined itself. Already over 600 years ago first diamonds were cut and the same technique is still used to transform precious stones into exquisite jewelry and later into unrivaled industrial tools.

Dr. Lars Pastewka’s and Prof. Michael Moseler’s team at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg/Germany can now reveal the secret of why it is that diamonds can be machined. The team published its findings in the current online issue of Nature Materials (http://dx.doi.org/10.1038/nmat2902).

This work represents major progress in tribology -the research of friction and wear. Despite the great significance for industry the scientific basics of tribology are poorly understood.

Diamonds have been ground by craftsmen for hundreds of years using cast iron wheels studded with fine diamond particles turning at around 30 meters per second at the outer rim. A highly tuned sense of sound and feeling enable an experienced diamond grinder to hold the rough diamond at just the right angle to achieve a smooth and polished surface. The fact that diamonds react directionally has been known for a long time, says Lars Pastewka. The physical phenomenon is known as anisotropy. The carbon atoms in the diamond lattice form lattice planes, some of which are easier to polish than others, depending on the angle at which the diamond is held.

For hundreds of years, researchers have been looking for a logical way of explaining this empirical phenomenon, and have so far been unsuccessful. Equally, no one has been able to explain why it is possible that the hardest material in the world can be machined. The scientists in Freiburg have answered both these questions with the help of a newly developed calculation method.

Michael Moseler explains the method in layman’s terms: »The moment a diamond is ground, it is no longer a diamond.« Due to the high-speed friction between the rough diamond and the diamond particles in the cast iron wheel, a completely different »glass-like carbon phase« is created on the surface of the precious stone in a mechanochemical process. The speed at which this material phase appears depends on the crystal orientation of the rough diamond. »This is where anisotropy comes in«, explains Moseler.

The new material on the surface of the diamond, adds Moseler, is then »peeled off« in two ways: the ploughing effect of the sharp-edged diamond particles in the wheel repeatedly scratches off tiny carbon dust particles from the surface - this would not be possible in the original diamond state, which is too hard and in which the bond forces would be too great. The second, equally important impingement on the normally impenetrably hard crystal surface is due to oxygen (O) in the air. The O2 molecules bond with carbon atoms (C) within the instable, long carbon chains that have formed on the surface of the glassy phase to produce the atmospheric gas CO2, carbon dioxide.

And how was it possible to determine when and which atoms would detach from the crystalline surface? »We looked extremely closely at the quantum mechanics of the bonds between the atoms at the surface of the rough diamond breaking. We had to analyze the force field between the atoms in detail«, explains Lars Pastewka.

If one understands these forces well enough, one can precisely describe - and model - how to make and break bonds. »This provided the basis for investigations into the dynamics of the atoms at the friction surface between a diamond particle on the wheel and the rough diamond itself«, adds Pastewka. He and his colleague Moseler have calculated the paths of around 10,000 diamond atoms and followed them on screen. Their calculations paid off: their model is able to explain all the processes involved in the dusty and long misunderstood method of diamond grinding.

The newly developed model is not only a milestone in the field of diamond research: »It proves also that friction and wear processes can be described precisely with modern material simulation methods ranging from the atomic level to macroscopic objects.« emphasizes Prof. Peter Gumbsch, director of the institute. He considers this just as one example of the many questions on wear that industry needs answers to. These questions will be addressed in future by the Fraunhofer IWM within the newly founded MicroTribology Centre µTC under the motto »make tribology predictable«.

Thomas Goetz | alfa
Further information:
http://www.iwm.fraunhofer.de

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>