Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft spheres settle in somewhat surprising structure

25.07.2011
Latex paints and drug suspensions such as insulin or amoxicillin that do not need to be shaken or stirred may be possible thanks to a new understanding of how particles separate in liquids, according to Penn State chemical engineers, who have developed a method for predicting the way colloidal components separate based on energy.

"The ongoing assumption was that if you have a mixture of different sized particles in a liquid, the faster-settling particles will end up on the bottom," said Darrell Velegol, professor of chemical engineering. "We found that in many cases it doesn't matter how fast they settle. The particles keep jostling until they reach the low-energy state."


Blue and orange balls of different sizes as seen through a confocal microscope. The smaller orange spheres fill in the spaces between the larger blue spheres. Credit: Joseph McDermott, Penn State

Another known mechanism for settling is the Brazil nut effect, where dry particles eventually sort themselves out with the larger particles on the top -- the way the Brazil nuts are always found on the top of the can of mixed nuts. This mechanism, however, does not apply to particles in liquids.

Velegol, working with César González Serrano, former graduate student, and Joseph J. McDermott, graduate student, found that settling speeds were not the determining characteristics of settling mixtures, but that the particles on the bottom are the ones in the lowest energy state. They reported their results in today's (July 24) online issue of Nature Materials.

"Sedimentation is an old field, and it's taken us a long time to figure it out," said Velegol.

Velegol explains that small colloidal particles -- roughly 1 micrometer, about 1 percent as thick as a human hair -- in weakly ionic liquids like water are soft, surrounded by an electrostatic field that allows them to feel other particles before they actually touch. Because of the electrostatic charge, repel the other particles, allowing the particles and the liquid to keep in constant motion.

In higher-ionic-strength liquids like seawater, spheres are hard, unable to sense other spheres until they actually touch. They create glassy mixtures where the particles become locked in place before they find their lowest energy state.

"Soft particles, because they have forces between, avoid becoming glassy," said Velegol. "All things try to go to the lowest energy state, but most of the time particles can't get to that state. The Brazil nut effect is not a minimal energy state. The nuts are frozen in a non-equilibrium state, not where they really want to be in the end."

The road to understanding this separation process was initially accidental. González Serrano, working on another project was having difficulty seeing the two kinds of colloidal particles he was using, so he decided to use two different colors of material. He left the extra mixture in a beaker overnight and found two distinct color layers in the morning. The researchers repeated the experiment and consistently found the same result, but were initially unable to explain why it happened.

"We found that dense particles went to the bottom, even if they were very small and settled slowly," said Velegol.

The researchers found that the particles settled in the order of their density. Particles of silica and gold, for example, will always settle with the gold on the bottom and the silica on top because gold is denser than silica. This occurs even when they used gold nanoparticles, which settle extremely slowly.

When it comes to particles of the same material, the process becomes more difficult to explain. Using differently sized and colored particles of the same substance, the researchers found what appeared to be a layer of large particles below a layer of smaller particles. On closer inspection, while the top layer was completely small particles, the bottom layer was actually a layer of the large particles with a small amount of small particles.

The separation of particles occurs because of packing densities. Normally uniform spheres filling a space can occupy only 64 percent of the space. However, if one material is smaller, the packing density can increase.

"The unusual thing is that this mixture of spheres in water behaves as a single substance with a higher density than one type of sphere in water," says Velegol. "We can predict the percentage of the bottom layer that will be composed of each size particle because we can calculate the energy of the entire system."

Some of the separations even create a uniform layer on the top and bottom with a mixed layer in between.

"We ran one mixture after calculating the minimum energy and predicted three phases," said Velegol. "Sure enough, we had three phases when we did the experiment. The lower phase was a mixture of polystyrene and poly(methyl methacrylate), the middle was pure PMMA and the top layer was pure polystyrene. No one would have predicted that before."

The U.S. Department of Energy supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>