Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Textiles Were Only the Beginning - Presenting Resource Smart Materials

25.11.2008
First there was the glove that you could communicate through, then there were the tanktops and belts measuring heart rates and breathing frequency. The School of Textiles researcher Lena Berglin is getting attention for her smart textiles that combine design and technology.

On Tuesday, November 25th, she is set to publicly defend her dissertation, the first on interactive textile structures, at Chalmers. A dissertation that will be a springboard for the new resource smart textiles that don't even have to touch the body to give measurable results.

In the beginning of the 21st century, Lena Berglin started dismantling two interactive products, among them an intelligent glove, capable of transmitting communication. That marked the start of her research. When she assembled the parts a whole new textile product was created, an ECG tanktop. Prior to this she had gotten in touch with the Work Life Institute and the Medical Technology department at the UmeåUniversity. Jointly, they have developed a concept with garments for health monitoring. The products are a tanbtop, a cardigen and a belt that measure ECG, muscular activity and breathing frequency.

"I wanted to do something that gave a positive health effect and made life easier," explains Lena Berglin and continues "people who have experienced a cardiac arrest and are worried about getting back into exercising find it easier doing that with a shirt like this."

The cardigan was developed because it is easy to wear on top of other clothes. The garment then measures at the wrist, and the box can be stored in the cardigan pocket. The cuffs are woven according to a three layer principle and a small unit contains both the battery and transmitter. The ECG shirt will hopefully be commercially sold within a year.

"The American market is very interested. They want the technology and have a customer that is used to paying for health care."

Smart Textiles Make Life Easier

In her dissertation, Lena Berglin defines smart textiles, as well as what new methods there are for developing work with smart textiles. She talks about textiles that react to their surroundings based on special scenarios. Simultaneously, smart textiles can be split inte three groups, three levels.

"The first group is hybrids, which really means that the electronic components are sown or woven into the textile. Many people don't consider these smart textiles, but I call it the simplest form, because if the technology compoment is small enough, they work perfectly well."

Lena Berglin describes the other group where the fabric is the carrier of whatever reacts. It might be a network of electrodes being connected. The third group is the one she has dedicated most of her research to, the interactive smart textiles. The unifying theme of Lena Berglin's projects is electroactive textiles. With the help of metals she creates surfaces on the textiles, surfaces that transmit a current. The breathing monitoring textiles she has developed can, for example, be used for helping children born prematurely.

"My research has always been very applicable. I combine technology and design."

She was trained at the School of Textiles herself. After that she got a master's degree in interaction design at Chalmers, and after a few years working she returned to the School of Textiles and Chalmers to do research on smart textiles.

Lena Berglin explains the advantages with incorporating function into a garment.

"You won't need a lot of extra equipment. You are wearing the garment and fabrics are good to work with. It is functional."

Smart textiles are, in other words, more than just textiles. The concept is used in several important fields; health care uniforms, sportswear and protective garments, and also interior decorating, construction and automobiles, or even in biomedical implants.

"The smart textiles have attracted a lot of attention lately, and you might even say they are at their peak right now. That's why it's important to live up to the demands. We still have a few problems that we need to find solutions to," explains Lena Berglin.

The fourth group she descibes as the resource smart textiles of the future.

"That is where I want to continue with my research. It is the new generation of multifunctional fibres that enable resource saving smart products, where everything is integrated into the fabric."

Like Science Fiction
Her dissertation marks the end of Lena Berglin's work in developing the interactive fibres created through smart textiles. Now she wants to delve deeper into the technology and continue working with the development of resource smart textiles. That's the way it is, the more Lena Berglin researches the smart textiles, the more she has to back the process up.

"This is where the fun begins," she smiles.

Among other things, she has glanced toward a development project with other researchers in organic electronics at Linköping University.

"We are looking at how to, through textiles, purify saltwater and make it drinkable, clean air and keep fabric cold on the outside and warm on the inside. In the hospital environment of the future you might not have to wear the ECG shirt, it might be positioned somewhere in the room and measure from there," explains Lena Berglin.

"We also want to integrate the technology into the fabric manufacturing process. That's why we at present are looking at the weaving system itself. A student at the School of Textiles, Siw Eriksson, has found new ways of weaving complex structures that are very useful for the structures I cover in my dissertation. When working with these kinds of things, you notice that you always have to go back and delve deeper into the technology. Because that is the basis of it all. It is there that we can be creative and find the solution."

Public Defence of Dissertation
Title of Dissertation: Interactive Textile Structures
Creating Multifunctional Textiles based on Smart Materials
By: Lena T H Berglin
Date: 25th of November 2008
Time: 10 am
Place: Room HC4, Hörsalsvägen 14, Chalmers Göteborg
The dissertation will be defended in English.
The faculty opponent will be professor Torben Lenau, The Technical University of Denmark in Lyngby.
Lena Berglin
The School of Textiles, University of Borås
501 90 Borås
Tfn: +4633 206335
Mobil: +4673 752 2324

Annie Andréasson | idw
Further information:
http://www.vr.se
http://www.hb.se/wps/portal/pressmeddelanden/pressmeddelande?name=HB2008-11-25_Lena%20Berglin%20disputerar

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>