Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart memory foam made smarter

28.09.2009
Metallic foam less expensive to make, leading to more applications

Researchers from Northwestern University and Boise State University have figured out how to produce a less expensive shape-shifting "memory" foam, which could lead to more widespread applications of the material, such as in surgical positioning tools and valve mechanisms.

David Dunand, the James N. and Margie M. Krebs Professor of Materials Science and Engineering at Northwestern, has been collaborating with Peter Müllner, professor of materials science and engineering at Boise State, on a project focused on a nickel-manganese-gallium alloy that changes shape when exposed to a magnetic field.

The alloy retains its new shape when the field is turned off but returns to its original shape if the field is rotated 90 degrees, demonstrating "magnetic shape-memory." The alloy can be activated millions of times, and it deforms reliably and reproducibly as a result. This property could be used to advantage in fast-operating actuators (mechanical devices for moving or controlling a mechanism or system) in inkjet printers, car engines and surgical tools.

To date, the magnetic shape-memory effect has occurred only in nickel-manganese-gallium single crystals, which are much more difficult and expensive to create than the more common polycrystals.

Now, Dunand, Müllner and their colleagues have created easily processable polycrystalline foams with shape-changing properties resembling those of the much more expensive single crystals. They did this by introducing small pores into the "nodes" of their original metallic foam, which, much like a sponge, consisted of struts connected by relatively large nodes. Adding a second level of porosity allowed for deformation and retention in the polycrystalline foam of some of the shape-memory properties.

The results are published online by the journal Nature Materials.

"One key aspect of this new 'smart' foam is that, together with a simple coil to produce a magnetic field, it creates a linear actuator of extreme simplicity -- and thus high reliability and miniaturization potential -- replacing a much more complex electro-mechanical system with many moving parts," Dunand said.

Potential applications range from replacing materials currently being used in sonar devices, precision actuators and magneto-mechanical sensors to enabling new devices in biomedicine and microrobotics.

"This was such a huge improvement that the foam was tested over and over again to make sure that no experimental mistakes were made," Müllner said. "Our new results may pave the way for magnetic shape-memory alloys for use in research labs and commercial applications."

Northwestern and Boise State have jointly filed a patent application.

The title of the Nature Materials paper is "Giant Magnetic-field-induced Strains in Polycrystalline Ni–Mn–Ga Foams." In addition to Dunand and Müllner, other authors of the paper are Xuexi Zhang, a visiting professor in Dunand's lab from China's Harbin Institute of Technology, and Markus Chmielus and Cassie Witherspoon, graduate students at Boise State.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>