Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart materials: Fused liquid marbles show their strength

01.08.2013
A superglue polymerisation strategy that fortifies encapsulated ‘liquid marble’ water droplets also strengthens their market potential

‘Liquid marbles’ are a peculiar new substance made by rolling water droplets into powders incapable of dissolving in water. The resulting micro- and nanoscale-particles act like soft solids, and can speed along surfaces without leaving water marks.

Such non-stick, hydrophobic behaviour has potential application in drug-delivery and microfluidic technology. However, liquid marbles suffer from erratic structures prone to collapse. Jia Min Chin, Jianwei Xu and co-workers from A*STAR’s Institute of Materials Research and Engineering, and Institute of Bioengineering and Nanotechnology, have now developed a scheme to stabilise liquid marbles quickly and safely using vapours from ordinary superglue[1].

Many powders used to make liquid marbles are based on metal–organic frameworks (MOFs), a type of crystal in which metal ions are interspersed with rigid organic molecules. Chin, Xu and co-workers investigated whether MOFs known as NH2-MIL-53(Al), a combination of aluminium atoms and amino-phenyl compounds, could grow directly on the surfaces of alumina micro-particles.

This approach, the team theorised, might provide extra structural control over liquid marble stability. After confirming MOF growth with x-ray measurements, the team modified the micro-particles with either hydrocarbon or fluorocarbon chains, converting them into ‘superhydrophobic’ powders. Then, they produced alumina-supported liquid marbles by adding micro-sized water droplets.

The researchers found that their new liquid marbles had greater stability than usual, thanks to its reactive amino groups and high surface roughness. Yet, they sought to further boost its resilience. When they spotted small gaps between the MOF–alumina micro-particles with scanning electron microscopy, they inferred that certain gas molecules might enter these pores and create a cross-linked network through a process called air–liquid interfacial polymerisation.

Forensic scientists often use superglue vapours to uncover fingerprints at crime scenes; the trace water in finger smudges reacts rapidly with adhesive fumes and generates visible polymer structures. Taking a cue from this method, the team exposed their MOF–alumina liquid marble to superglue vapours in a Petri dish and saw a rigid polymer casing form within a few minutes. Chin notes that this procedure requires no heat, UV radiation, or chemical initiators — an unprecedented finding for liquid marble encapsulation. “Furthermore, the only solvent required was water, qualifying this as a ‘green’ reaction,” she adds.

The liquid marble retained its unique non-wetting behaviour on surfaces, even with the protective polymer coating. These stabilising attributes promise big dividends in areas such as gas purification and personal care products: two patents have already been filed this year in efforts to commercialise this technology.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering and the Institute of Bioengineering and Nanotechnology

[1] http://dx.doi.org/10.1039/c2cc37081f

Associated links
http://www.research.a-star.edu.sg/research/6715

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6715
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Less is more to produce top-notch 2D materials
20.11.2017 | The Agency for Science, Technology and Research (A*STAR)

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>