Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart materials: Fused liquid marbles show their strength

01.08.2013
A superglue polymerisation strategy that fortifies encapsulated ‘liquid marble’ water droplets also strengthens their market potential

‘Liquid marbles’ are a peculiar new substance made by rolling water droplets into powders incapable of dissolving in water. The resulting micro- and nanoscale-particles act like soft solids, and can speed along surfaces without leaving water marks.

Such non-stick, hydrophobic behaviour has potential application in drug-delivery and microfluidic technology. However, liquid marbles suffer from erratic structures prone to collapse. Jia Min Chin, Jianwei Xu and co-workers from A*STAR’s Institute of Materials Research and Engineering, and Institute of Bioengineering and Nanotechnology, have now developed a scheme to stabilise liquid marbles quickly and safely using vapours from ordinary superglue[1].

Many powders used to make liquid marbles are based on metal–organic frameworks (MOFs), a type of crystal in which metal ions are interspersed with rigid organic molecules. Chin, Xu and co-workers investigated whether MOFs known as NH2-MIL-53(Al), a combination of aluminium atoms and amino-phenyl compounds, could grow directly on the surfaces of alumina micro-particles.

This approach, the team theorised, might provide extra structural control over liquid marble stability. After confirming MOF growth with x-ray measurements, the team modified the micro-particles with either hydrocarbon or fluorocarbon chains, converting them into ‘superhydrophobic’ powders. Then, they produced alumina-supported liquid marbles by adding micro-sized water droplets.

The researchers found that their new liquid marbles had greater stability than usual, thanks to its reactive amino groups and high surface roughness. Yet, they sought to further boost its resilience. When they spotted small gaps between the MOF–alumina micro-particles with scanning electron microscopy, they inferred that certain gas molecules might enter these pores and create a cross-linked network through a process called air–liquid interfacial polymerisation.

Forensic scientists often use superglue vapours to uncover fingerprints at crime scenes; the trace water in finger smudges reacts rapidly with adhesive fumes and generates visible polymer structures. Taking a cue from this method, the team exposed their MOF–alumina liquid marble to superglue vapours in a Petri dish and saw a rigid polymer casing form within a few minutes. Chin notes that this procedure requires no heat, UV radiation, or chemical initiators — an unprecedented finding for liquid marble encapsulation. “Furthermore, the only solvent required was water, qualifying this as a ‘green’ reaction,” she adds.

The liquid marble retained its unique non-wetting behaviour on surfaces, even with the protective polymer coating. These stabilising attributes promise big dividends in areas such as gas purification and personal care products: two patents have already been filed this year in efforts to commercialise this technology.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering and the Institute of Bioengineering and Nanotechnology

[1] http://dx.doi.org/10.1039/c2cc37081f

Associated links
http://www.research.a-star.edu.sg/research/6715

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6715
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>