Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart anticancer nanofibers: Setting treatments to work together

16.07.2013
MANA researchers report that incorporating magnetic nanoparticles and an anticancer drug into crosslinked polymer nanofibers presents a twofold treatment for fighting cancer with diminished side effects.

Stimuli-responsive or ‘smart’ polymeric nanofibers have attracted increasing attention. The nanoscale structures give rise to high sensitivity to stimuli while they can also be manipulated easily as macroscopic materials.


Design concept for a smart hyperthermia nanofiber system that uses magnetic nanoparticles (MNPs) dispersed in temperature-responsive polymers. Anticancer drug, doxorubicin (DOX), is also incorporated into the nanofibers. The nanofibers are chemically crosslinked. First, the device signal (alternating magnetic field, AMF) is turned 'on' to activate the MNPs in the nanofibers. Then, the MNPs generate heat to collapse the polymer networks in the nanofiber, allowing the 'on-off' release of DOX. Both the generated heat and released DOX induce apoptosis of cancer cells by hyperthermic and chemotherapeutic effects, respectively.

Now researchers at the University of Tsukuba and the National Institute of Materials Science in Japan have demonstrated how they can be used to host magnetic nanoparticles to exploit hyperthermal effects for treating cancer while avoiding the usual side-effects. The incorporation of doxorubicin in the nanofibers as well allows controlled release of the anticancer drug as an additional mechanism for killing cancer cells.

Magnetic nanoparticles can kill cancer cells through the heat generated by induction when subjected to an alternating magnetic field. Such hyperthermal treatments have also been shown to improve the efficacy of anticancer drugs. However the nanoparticles can also lead to impaired mitochondrial function, inflammation, and DNA damage. Incorporating the nanoparticles into nanofibers may provide a solution.

Young-Jin Kim , Mitsuhiro Ebara , and Takao Aoyagi electrspun the fibers from a solution of the polymer poly(NIPAAm- co -HMAAm) mixed with a solution of magnetic nanoparticles and doxorubicin. The heating caused by the nanoparticles when switching on an alternating magnetic field caused hyperthermal effects, as well as reversible deswelling and deformation of the fibers, which released the drug molecules. Investigations in vitro and in cell lines demonstrated effective killing of cancer cells, which was greatly reduced for hyperthermal treatments alone in the absence of doxorubicin.

“The doxorubicin/magnetic-nanoparticles nanofi ber induced the apoptosis of cancer cells due to a synergistic effect of chemotherapy and hyperthermia,” say the authors. The work demonstrates how smart nanofibers have potential for use as a manipulative material that combines hyperthermia and drug release treatments that can be controlled with the simple switching on or off of an alternating magnetic field.

Contact information
International Center for Materials Nanoarchitectonics(WPI-MANA)
1-1 Namiki, Tsukuba-shi Ibaraki, 305-0044 Japan
Email: Jonathan.Hillnims.go.jp and ARIGA.Katsuhikonims.go.jp
Telephone: +81-29-860-3354
Journal information
Reference
A smart hyperthermia nanofi ber with switchable drug release for inducing cancer apoptosis Young-Jin Kim1,2, Mitsuhiro Ebara1 , and Takao Aoyagi1,2 *,2013 Adv. Funct. Mater. doi: 10.1002/adfm.201300746 .
Affiliations
1. Materials and Science Engineering Graduate School of Pure and Applied Science University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
2. Biomaterials Unit International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

*Corresponding author: AOYAGI.Takao@nims.go.jp

Adarsh Sandhu | Research asia research news
Further information:
http://www.nims.go.jp/mana/

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>