Smallest U-M logo demonstrates advanced display technology

The gratings, sliced into metal-dielectric-metal stacks, act as resonators. They trap and transmit light of a particular color, or wavelength, said Jay Guo, an associate professor in the Department of Electrical Engineering and Computer Science. A dielectric is a material that does not conduct electricity.

“Simply by changing the space between the slits, we can generate different colors,” Guo said. “Through nanostructuring, we can render white light any color.”

A paper on the research is published Aug. 24 in Nature Communications.

His team used this technique to make what they believes is the smallest color U-M logo. At about 12-by-9 microns, it's about 1/6 the width of a human hair.

Conventional LCDs, or liquid crystal displays, are inefficient and manufacturing-intensive to produce. Only about 5 percent of their back-light travels through them and reaches our eyes, Guo said. They contain two layers of polarizers, a color filter sheet, and two layers of electrode-laced glass in addition to the liquid crystal layer. Chemical colorants for red, green and blue pixel components must be patterned in different regions on the screen in separate steps.

Guo's color filter acts as a polarizer simultaneously, eliminating the need for additional polarizer layers. In Guo's displays, reflected light could be recycled to save much of the light that would otherwise be wasted.

Because these new displays contain fewer layers, they would be simpler to manufacture, Guo said. The new color filters contain just three layers: two metal sheets sandwiching a dielectric. Red, green and blue pixel components could be made in one step by cutting arrays of slits in the stack. This structure is also more robust and can endure higher- powered light.

Red light emanates from slits set around 360 nanometers apart; green from those about 270 nanometers apart and blue from those approximately 225 nanometers apart. The differently spaced gratings essentially catch different wavelengths of light and resonantly transmit through the stacks.

“Amazingly, we found that even a few slits can already produce well-defined color, which shows its potential for extremely high-resolution display and spectral imaging,” Guo said.

The pixels in Guo's displays are about an order of magnitude smaller than those on a typical computer screen. They're about eight times smaller than the pixels on the iPhone 4, which are about 78 microns. He envisions that this pixel size could make this technology useful in projection displays, as well as wearable, bendable or extremely compact displays.

The paper is called “Plasmonic nano-resonators for high resolution color filtering and spectral imaging.”

Guo is also an associate professor in the Department of Macromolecular Science and Engineering. This research is supported in part by the Air Force Office of Scientific Research and the Defense Advanced Research Projects Agency. The university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.

For more information on Jay Guo: www.eecs.umich.edu/~guo

Michigan Engineering

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $160 million annually, its engineering research budget is one of the largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world-class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference. Find out more at http://www.engin.umich.edu.

EDITORS: Images are available at www.ns.umich.edu/Releases/2010/Aug10/pixel.html

Media Contact

Nicole Casal Moore EurekAlert!

More Information:

http://www.engin.umich.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors