Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not Slippery When Wet: Geckos Adhere to Surfaces Submerged Underwater

11.04.2013
University of Akron study may help inform future bio-inspired gecko-like adhesives

Geckos are known for their sticky adhesive toes that allow them to stick to, climb on, and run along surfaces in any orientation--even upside down! But until recently, it was not well understood how geckos kept their sticking ability even on wet surfaces, as are common in the tropical regions in which most geckos live.


A tokay gecko (Gekko gecko) sits on a wet surface prior to adhesion tests. Geckos were pulled horizontally using a small pelvic harness (blue ribbon) attached to a motorized force sensor where the maximum force a gecko could cling was measured.

Credit: Ethan Knapp and Alyssa Stark, The University of Akron


A tokay gecko (Gekko gecko) clings to leaf stem wet with water droplets.
Credit: Alyssa Stark, The University of Akron

A 2012 study in which geckos slipped on wet glass perplexed scientists trying to unlock the key to gecko adhesion in climates with plentiful rain and moisture.

A study supported by the National Science Foundation and published in the Proceedings of the National Academy of Sciences this week solves the mystery, showing that wet, water-repellant surfaces, like those of leaves and tree trunks, actually secure a gecko's grip in a manner similar to dry surfaces.

Researchers from the University of Akron, led by integrated bioscience doctoral candidate Alyssa Stark, tested geckos on four different surfaces. The surfaces ranged from hydrophilic--those that liquids spread across when wet, like glass--to hydrophobic--water-repellent surfaces on which liquids bead, like the natural leaves geckos walk on--and intermediate ones, like acrylic sheets. Geckos were tested on these surfaces both when the surfaces were dry and when they were submerged underwater, and water completely covered the gecko's feet.

Fitting a small harness around the pelvis, geckos were gently pulled along the substrate until their feet began to slip. At this point the maximum force with which a gecko could stick was measured. On wet glass geckos slipped and could not maintain adhesion. However when tested on more hydrophobic surfaces, geckos stuck just as well to the wet surface as they did to the dry ones. When tested, geckos stuck even better to wet Teflon than dry.

To understand these findings, researchers developed a model that explains the results from the gecko study and may also help inform future bio-inspired gecko-like adhesives that can maintain adhesion underwater.

For more details, see: Geckos keep firm grip in wet natural habitat.

Media Contacts
Bobbie Mixon, NSF (703) 292-8070 bmixon@nsf.gov
Denise Henry, University of Akron henryd@uakron.edu
Lisa-Joy Zgorski, NSF (703) 292-8311 lisajoy@nsf.gov
Program Contacts
Andrew J. Lovinger, NSF (703) 292-4933 alovinge@nsf.gov
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget was $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>