Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not Slippery When Wet: Geckos Adhere to Surfaces Submerged Underwater

11.04.2013
University of Akron study may help inform future bio-inspired gecko-like adhesives

Geckos are known for their sticky adhesive toes that allow them to stick to, climb on, and run along surfaces in any orientation--even upside down! But until recently, it was not well understood how geckos kept their sticking ability even on wet surfaces, as are common in the tropical regions in which most geckos live.


A tokay gecko (Gekko gecko) sits on a wet surface prior to adhesion tests. Geckos were pulled horizontally using a small pelvic harness (blue ribbon) attached to a motorized force sensor where the maximum force a gecko could cling was measured.

Credit: Ethan Knapp and Alyssa Stark, The University of Akron


A tokay gecko (Gekko gecko) clings to leaf stem wet with water droplets.
Credit: Alyssa Stark, The University of Akron

A 2012 study in which geckos slipped on wet glass perplexed scientists trying to unlock the key to gecko adhesion in climates with plentiful rain and moisture.

A study supported by the National Science Foundation and published in the Proceedings of the National Academy of Sciences this week solves the mystery, showing that wet, water-repellant surfaces, like those of leaves and tree trunks, actually secure a gecko's grip in a manner similar to dry surfaces.

Researchers from the University of Akron, led by integrated bioscience doctoral candidate Alyssa Stark, tested geckos on four different surfaces. The surfaces ranged from hydrophilic--those that liquids spread across when wet, like glass--to hydrophobic--water-repellent surfaces on which liquids bead, like the natural leaves geckos walk on--and intermediate ones, like acrylic sheets. Geckos were tested on these surfaces both when the surfaces were dry and when they were submerged underwater, and water completely covered the gecko's feet.

Fitting a small harness around the pelvis, geckos were gently pulled along the substrate until their feet began to slip. At this point the maximum force with which a gecko could stick was measured. On wet glass geckos slipped and could not maintain adhesion. However when tested on more hydrophobic surfaces, geckos stuck just as well to the wet surface as they did to the dry ones. When tested, geckos stuck even better to wet Teflon than dry.

To understand these findings, researchers developed a model that explains the results from the gecko study and may also help inform future bio-inspired gecko-like adhesives that can maintain adhesion underwater.

For more details, see: Geckos keep firm grip in wet natural habitat.

Media Contacts
Bobbie Mixon, NSF (703) 292-8070 bmixon@nsf.gov
Denise Henry, University of Akron henryd@uakron.edu
Lisa-Joy Zgorski, NSF (703) 292-8311 lisajoy@nsf.gov
Program Contacts
Andrew J. Lovinger, NSF (703) 292-4933 alovinge@nsf.gov
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget was $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>