Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singapore-made anti-reflective plastics to be commercialised

24.05.2012
The innovative plastics offer improved performance and wider viewing angles over existing anti-reflective plastics in the market. This plastic uses a locally-developed nanotechnology method that creates a complex pattern of super tiny structures that mimic the patterns found on a moth’s eye, which has a unique method of diffusing light.

Researchers from A*STAR’s Institute of Materials Research and Engineering (IMRE) and their commercial partners have developed a new plastic that reflects just 0.09 – 0.2% of the visible light hitting its surface. This matches or betters existing anti-reflective and anti-glare plastics in the market, which typically have reported reflectivity of around 1% of visible light.


Scanning electron microscope (SEM) image showing the engineered anti-reflective nanostructures that mimic structures found in a moth’s eye.
Copyright : IMRE

Such plastics are used in anything from TV displays to windows and even solar cells. Because of the unique nanotechnology method used, the new plastic developed by IMRE maintains very low reflectivity (

“The new plastic was made possible because of the unique nanoimprint expertise that we have developed at IMRE,” said Dr Low Hong Yee, the senior scientist who is leading the research. Several companies are in the process of licensing the anti-reflective nanostructure technology from Exploit Technologies Pte Ltd, the technology transfer arm of A*STAR. “We are also developing complementary research that allows the technology to be easily ramped-up to an industrial scale,” explained Dr Low.

This plastic material is the first successful result of the IMRE-led Industrial Consortium On Nanoimprint (ICON), which partners local and overseas companies to promote the manufacturing of nanoimprint technology. Nanoimprinting relies on engineering the physical aspects of the plastics rather than using harmful chemicals to change the properties of the plastic. The technology has allowed the researchers to create very unique, complex hierarchical ‘moth eye-like’ anti-reflective structures where nanometer-sized structures are placed on top of other microstructures - different from how other similar plastics are made. This formed special patterns that are better at reducing glare and reflection and provides wider viewing angles than the current available plastics.

“This is an exciting innovation – mimicking nature through the nanoimprint technology to solve real world problems. I am very pleased that the collaboration with industry has helped move this R&D from the laboratory to application in the industry, said Prof Andy Hor, IMRE’s Executive Director. He adds, “The development of the new plastic is a testament to the strength of Singapore’s advanced R&D capabilities, the benefits of nanoimprint technology and the confidence that companies place on our technologies.”

“The outstanding results from this consortium work will benefit our company's expansion into new markets such as in the touchscreen panel and solar business sectors," said Mr Wilson Kim Woo Yong, Director, Global Marketing from Young Chang Chemical Co., Ltd.

“We have been very impressed with the developed technology and with the excellent team of researchers working on the anti-reflective structures”, said Mr Tatsuo Shirahama, President from Innox Co. Ltd.
“The results from the consortium work are key in the decision making for our future strategic planning,” said Dr Yuji Akatsu, Business Unit Manager from the Nanotechnology business unit, Advanced Products Business Headquarters, NTT-AT.

Annex A: A*STAR Corporate Profiles
Annex B: More information on ICON, nanoimprint technology and anti-reflective surfaces

For media enquiries, please contact:

Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
For technical enquiries, please contact:

Dr Jaslyn Law
Scientist II
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 7902
E-mail lawj@imre.a-star.edu.sg

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>