Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simpler Process to Grow Germanium Nanowires Could Improve Lithium-Ion Batteries

01.09.2014

Researchers at Missouri University of Science and Technology have developed what they call “a simple, one-step method” to grow nanowires of germanium from an aqueous solution. Their process could make it more feasible to use germanium in lithium-ion batteries.

The Missouri S&T researchers describe their method in a paper published Thursday (Aug. 28, 2014) on the website of the journal ACS Nano. The researchers’ one-step approach could lead to a simpler, less expensive way to grow germanium nanowires.


Jay A. Switzer/Missouri University of Science and Technology

Scanning electron micrograph image of germanium nanowires electrodeposited onto an indium-tin oxide electrode from an aqueous solution.

As a semiconductor material, germanium is superior to silicon, says Dr. Jay A. Switzer, the Donald L. Castleman/Foundation for Chemical Research Professor of Discovery at Missouri S&T. Germanium was even used in the first transistors. But it is more expensive to process for widespread use in batteries, solar cells, transistors and other applications, says Switzer, who is the lead researcher on the project.

Switzer and his team have had success growing other materials at the nanometer scale through electrodeposition – a process that Switzer likens to “growing rock candy crystals on a string.” For example, in a 2009 Chemistry of Materials paper, Switzer and his team reported that they had grown zinc oxide “nanospears” – each hundreds of times smaller than the width of a human hair – on a single-crystal silicon wafer placed in a beaker filled with an alkaline solution saturated with zinc ions.

But growing germanium at the nano level is not so simple. In fact, electrodeposition in an aqueous solution such as that used to grow the zinc oxide nanospears “is thermodynamically not feasible,” Switzer and his team explain in their ACS Nano paper, “Electrodeposited Germanium Nanowires.”

So the Missouri S&T researchers took a different approach. They modified an electrodeposition process found to produce germanium nanowires using liquid metal electrodes. That process, developed by University of Michigan researchers led by Dr. Stephen Maldonado and known as the electrochemical liquid-liquid-solid process (ec-LLS), involves the use of a metallic liquid that performs two functions: It acts as an electrode to cause the electrodeposition as well as a solvent to recrystallize nanoparticles.

Switzer and his team applied the ec-LLS process by electrochemically reducing indium-tin oxide (ITO) to produce indium nanoparticles in a solution containing germanium dioxide, or Ge(IV). “The indium nanoparticle in contact with the ITO acts as the electrode for the reduction of Ge(IV) and also dissolves the reduced Ge into the particle,” the Missouri S&T team reports in the ACS Nano paper. The germanium then “starts to crystallize out of the nanoparticle allowing the growth of the nanowire.”

The Missouri S&T researchers tested the effect of temperature for electrodeposition by growing the germanium nanowires at room temperature and at 95 degrees Celsius (203 degrees Fahrenheit). They found no significant difference in the quality of the nanowires, although the nanowires grown at room temperature had smaller diameters. Switzer believes that the ability to produce the nanowires at room temperature through this one-step process could lead to a less expensive way to produce the material.

“The high conductivity (of germanium nanowires) makes them ideal for lithium-ion battery applications,” Switzer says.

Switzer’s co-authors on the paper “Electrodeposited Germanium Nanowires” were lead author Naveen K. Mahenderkar, a Ph.D. candidate in materials science and engineering at Missouri S&T; Ying-Chau Liu, a Ph.D. candidate in chemistry at Missouri S&T; and Jakub A. Koza, a postdoctoral associate in Missouri S&T’s Materials Research Center.

Switzer’s research in this area is funded through a $1.22 million grant from the U.S. Department of Energy’s Office of Basic Energy Science.

Contact Information

Andrew Careaga
Communications Director
acareaga@mst.edu
Phone: 573-341-4328
Mobile: 573-578-4420

Andrew Careaga | newswise
Further information:
http://www.mst.edu

Further reports about: ACS Germanium Lithium-Ion Nano S&T Technology electrodeposition nanowires temperature zinc

More articles from Materials Sciences:

nachricht Graphene origami as a mechanically tunable plasmonic structure for infrared detection
25.04.2018 | University of Illinois College of Engineering

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>