Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silly Putty Material Inspires Better Batteries

16.05.2014

Engineers use silicon dioxide to make lithium-ion batteries that last three times longer between charges compared to current standard

Using a material found in Silly Putty and surgical tubing, a group of researchers at the University of California, Riverside Bourns College of Engineering have developed a new way to make lithium-ion batteries that will last three times longer between charges compared to the current industry standard.


Silicon polymer and battery used for the research.

The team created silicon dioxide (SiO2) nanotube anodes for lithium-ion batteries and found they had over three times as much energy storage capacity as the carbon-based anodes currently being used. This has significant implications for industries including electronics and electric vehicles, which are always trying to squeeze longer discharges out of batteries.

“We are taking the same material used in kids’ toys and medical devices and even fast food and using it to create next generation battery materials,” said Zachary Favors, the lead author of a just-published paper on the research.

The paper, “Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries,” was published online in the journal Nature Scientific Reports.

It was co-authored by Cengiz S. Ozkan, a mechanical engineering professor, Mihrimah Ozkan, an electrical engineering professor, and several of their current and former graduate students: Wei Wang, Hamed Hosseinni Bay, Aaron George and Favors.

The team originally focused on silicon dioxide because it is an extremely abundant compound, environmentally friendly, non-toxic, and found in many other products.

Silicon dioxide has previously been used as an anode material in lithium ion batteries, but the ability to synthesize the material into highly uniform exotic nanostructures with high energy density and long cycle life has been limited.

There key finding was that the silicon dioxide nanotubes are extremely stable in batteries, which is important because it means a longer lifespan. Specifically, SiO2 nanotube anodes were cycled 100 times without any loss in energy storage capability and the authors are highly confident that they could be cycled hundreds more times.

The researchers are now focused on developed methods to scale up production of the SiO2 nanotubes in hopes they could become a commercially viable product.

The research is supported by Temiz Energy Technologies.

Media Contact

Sean Nealon Tel: (951) 827-1287 E-mail: sean.nealon@ucr.edu Twitter: seannealon

Additional Contacts

Cengiz Ozkan Tel: 951-827-5016 E-mail: cozkan@engr.ucr.edu

Sean Nealon | Eurek Alert!

Further reports about: batteries battery dioxide implications lifespan materials synthesize vehicles

More articles from Materials Sciences:

nachricht World’s Highest Magnetic Field* (1,020MHz) NMR developed
03.07.2015 | National Institute for Materials Science

nachricht Diamond provides technical progress
03.07.2015 | Julius-Maximilians-Universität Würzburg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Aluminum Clusters Shut Down Molecular Fuel Factory

06.07.2015 | Power and Electrical Engineering

Veja Mate Offshore orders 67 wind turbines including record long-term service

06.07.2015 | Press release

The quantum middle man

06.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>