Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silk microneedles deliver controlled-release drugs painlessly

22.12.2011
Bioengineers at Tufts University School of Engineering have developed a new silk-based microneedle system able to deliver precise amounts of drugs over time and without need for refrigeration.

The tiny needles can be fabricated under normal temperature and pressure and from water, so they can be loaded with sensitive biochemical compounds and maintain their activity prior to use. They are also biodegradable and biocompatible.

The research paper "Fabrication of Silk Microneedles for Controlled-Release Drug Delivery" appeared in Advanced Functional Materials December 2 online in advance of print.

The Tufts researchers successfully demonstrated the ability of the silk microneedles to deliver a large-molecule, enzymatic model drug, horseradish peroxidase (HRP), at controlled rates while maintaining bioactivity. In addition, silk microneedles loaded with tetracycline were found to inhibit the growth of Staphylococcus aureus, demonstrating the potential of the microneedles to prevent local infections while also delivering therapeutics.

"By adjusting the post-processing conditions of the silk protein and varying the drying time of the silk protein, we were able to precisely control the drug release rates in laboratory experiments," said Fiorenzo Omenetto, Ph.D., senior author on the paper. "The new system addresses long-standing drug delivery challenges, and we believe that the technology could also be applied to other biological storage applications."

The Drug Delivery Dilemma

While some drugs can be swallowed, others can't survive the gastrointestinal tract. Hypodermic injections can be painful and don't allow a slow release of medication. Only a limited number of small-molecule drugs can be transmitted through transdermal patches. Microneedles—no more than a micron in size and able to penetrate the upper layer of the skin without reaching nerves—are emerging as a painless new drug delivery mechanism. But their development has been limited by constraints ranging from harsh manufacturing requirements that destroy sensitive biochemicals, to the inability to precisely control drug release or deliver sufficient drug volume, to problems with infections due to the small skin punctures.

The process developed by the Tufts bioengineers addresses all of these limitations. The process involves ambient pressure and temperature and aqueous processing. Aluminum microneedle molding masters were fabricated into needle arrays of about 500 µm needle height and tip radii of less than 10 µm. The elastomer polydimethylsiloxane (PDMS) was cast over the master to create a negative mold; a drug-loaded silk protein solution was then cast over the mold. When the silk was dry, the drug-impregnated silk microneedles were removed. Further processing through water vapor annealing and various temperature, mechanical and electronic exposures provided control over the diffusity of the silk microneedles and drug release kinetics.

"Changing the structure of the secondary silk protein enables us to 'pre-program' the properties of the microneedles with great precision," said David L. Kaplan, Ph.D., coauthor of the study, chair of biomedical engineering at Tufts and a leading researcher on silk and other novel biomaterials. "This is a very flexible technology that can be scaled up or down, shipped and stored without refrigeration and administered as easily as a patch or bandage. We believe the potential is enormous."

Other co-authors on the paper, all associated with the Department of Biomedical Engineering, are Konstantinos Tsioris, doctoral student; Waseem Raja, post-doctoral associate; Eleanor Pritchard, post-doctoral associate; and Bruce Panilaitis, research assistant professor.

The research was based on work supported in part by the U.S. Army Research Laboratory, the U.S. Army Research Office, the Defense Advanced Research Projects Agency-Defense Sciences Office and the Air Force Office of Scientific Research.

Tsioris, K., Raja, W. K., Pritchard, E. M., Panilaitis, B., Kaplan, D. L. and Omenetto, F. G. (2011), Fabrication of Silk Microneedles for Controlled-Release Drug Delivery. Advanced Functional Materials. doi: 10.1002/adfm.201102012

Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering's mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>