Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sheet Metal That Never Rattles

02.04.2014

First step towards “programmable materials“

Although the “programmable material” still only works in a one-dimensional model construction, it has already demonstrated it unusual capabilities: The research project entitled Phononic Crystal with Adaptive Connectivity has just been published in the journal Advanced Materials (www.advmat.de). The first step towards mechanical components with freely programmable properties has thus been achieved.

The working model used by the researchers consists of a one-meter by one-centimeter aluminum plate that is one millimeter thick. This sheet-metal strip can vibrate at different frequencies. In order to control the wave propagation, ten small aluminum cylinders (7 mm thick, 1 cm high) are attached to the metal. Between the sheet and the cylinders sit piezo discs, which can be stimulated electronically and change their thickness in a flash. This ultimately enables the team headed by project supervisor Andrea Bergamini to control exactly whether and how waves are allowed to propagate in the sheet-metal strip. The aluminum strip thus turns into a so-called adaptive phononic crystal – a material with adaptable properties.

Adaptation in fractions of a second

The piezo controls can now be set in such a way that waves are able to propagate through the sheet-metal strip “perfectly normally”, i.e. as though no aluminum cylinders were attached to it. Another configuration enables a certain frequency spectrum of the waves to be absorbed. And this muffling is variable as the piezo elements can alter their elastic properties electronically in fractions of a second – from low to high stiffness. Bergamini explains what could develop from the research results: “Imagine you produce a sheet of metal, imprinted with an electronic circuit and small piezo elements at regular intervals. This sheet metal could be programmed electronically to block a certain vibration frequency. The interesting thing is that even if you cut off part of the sheet, the waves in the cropped section would largely spread in the same way as in the initial piece.” This method could be used on three-dimensional components.

Such a “metamaterial” could fundamentally revolutionize mechanical engineering and plant construction. Until now, the vibration properties were already determined in the selection of material and the geometry of the part. In future, the material could react to current vibration readings and adapt its vibration properties at lightning speed.

Further research on “programmable materials“

During the Phononic Crystal with Adaptive Connectivity research project, Empa-researcher Bergamini collaborated with Paolo Ermanni’s group at ETH Zurich and Massimo Ruzzene from Georgia Institute of Technology. In a follow-up project, the programmability of the prototype is to be expanded: “Until now, every piezo element has reacted to vibrations alone, independent of its neighbor,” explains Bergamini. “As the next step, we want to interconnect the elements with each other to be able to control them jointly or in a coordinated fashion.”

Info: Metamaterials (Wikipedia - http://en.wikipedia.org/wiki/Metamaterial)
Metamaterials are artificial media structured on a size scale smaller than the wavelength of external stimuli. Materials of interest exhibit properties not found in nature, such as negative index of refraction. They are cellular assemblies of multiple elements fashioned from materials including metals and plastics, arranged in periodic patterns. Metamaterials gain their properties not from their constituents, but from their exactingly-designed structures. Their precise shape, geometry, size, orientation and arrangement can affect light or sound in a manner that is unachievable with conventional materials.

Dr. Andrea Bergamini | newswise
Further information:
http://www.empa.ch

Further reports about: Connectivity Empa Metal Sheet Technology construction geometry materials properties waves

More articles from Materials Sciences:

nachricht Nanobionics Supercharge Photosynthesis
22.05.2015 | Department of Energy, Office of Science

nachricht Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies
22.05.2015 | National Institute for Materials Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>