Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sheet Metal That Never Rattles

02.04.2014

First step towards “programmable materials“

Although the “programmable material” still only works in a one-dimensional model construction, it has already demonstrated it unusual capabilities: The research project entitled Phononic Crystal with Adaptive Connectivity has just been published in the journal Advanced Materials (www.advmat.de). The first step towards mechanical components with freely programmable properties has thus been achieved.

The working model used by the researchers consists of a one-meter by one-centimeter aluminum plate that is one millimeter thick. This sheet-metal strip can vibrate at different frequencies. In order to control the wave propagation, ten small aluminum cylinders (7 mm thick, 1 cm high) are attached to the metal. Between the sheet and the cylinders sit piezo discs, which can be stimulated electronically and change their thickness in a flash. This ultimately enables the team headed by project supervisor Andrea Bergamini to control exactly whether and how waves are allowed to propagate in the sheet-metal strip. The aluminum strip thus turns into a so-called adaptive phononic crystal – a material with adaptable properties.

Adaptation in fractions of a second

The piezo controls can now be set in such a way that waves are able to propagate through the sheet-metal strip “perfectly normally”, i.e. as though no aluminum cylinders were attached to it. Another configuration enables a certain frequency spectrum of the waves to be absorbed. And this muffling is variable as the piezo elements can alter their elastic properties electronically in fractions of a second – from low to high stiffness. Bergamini explains what could develop from the research results: “Imagine you produce a sheet of metal, imprinted with an electronic circuit and small piezo elements at regular intervals. This sheet metal could be programmed electronically to block a certain vibration frequency. The interesting thing is that even if you cut off part of the sheet, the waves in the cropped section would largely spread in the same way as in the initial piece.” This method could be used on three-dimensional components.

Such a “metamaterial” could fundamentally revolutionize mechanical engineering and plant construction. Until now, the vibration properties were already determined in the selection of material and the geometry of the part. In future, the material could react to current vibration readings and adapt its vibration properties at lightning speed.

Further research on “programmable materials“

During the Phononic Crystal with Adaptive Connectivity research project, Empa-researcher Bergamini collaborated with Paolo Ermanni’s group at ETH Zurich and Massimo Ruzzene from Georgia Institute of Technology. In a follow-up project, the programmability of the prototype is to be expanded: “Until now, every piezo element has reacted to vibrations alone, independent of its neighbor,” explains Bergamini. “As the next step, we want to interconnect the elements with each other to be able to control them jointly or in a coordinated fashion.”

Info: Metamaterials (Wikipedia - http://en.wikipedia.org/wiki/Metamaterial)
Metamaterials are artificial media structured on a size scale smaller than the wavelength of external stimuli. Materials of interest exhibit properties not found in nature, such as negative index of refraction. They are cellular assemblies of multiple elements fashioned from materials including metals and plastics, arranged in periodic patterns. Metamaterials gain their properties not from their constituents, but from their exactingly-designed structures. Their precise shape, geometry, size, orientation and arrangement can affect light or sound in a manner that is unachievable with conventional materials.

Dr. Andrea Bergamini | newswise
Further information:
http://www.empa.ch

Further reports about: Connectivity Empa Metal Sheet Technology construction geometry materials properties waves

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>