Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sheet Metal That Never Rattles

02.04.2014

First step towards “programmable materials“

Although the “programmable material” still only works in a one-dimensional model construction, it has already demonstrated it unusual capabilities: The research project entitled Phononic Crystal with Adaptive Connectivity has just been published in the journal Advanced Materials (www.advmat.de). The first step towards mechanical components with freely programmable properties has thus been achieved.

The working model used by the researchers consists of a one-meter by one-centimeter aluminum plate that is one millimeter thick. This sheet-metal strip can vibrate at different frequencies. In order to control the wave propagation, ten small aluminum cylinders (7 mm thick, 1 cm high) are attached to the metal. Between the sheet and the cylinders sit piezo discs, which can be stimulated electronically and change their thickness in a flash. This ultimately enables the team headed by project supervisor Andrea Bergamini to control exactly whether and how waves are allowed to propagate in the sheet-metal strip. The aluminum strip thus turns into a so-called adaptive phononic crystal – a material with adaptable properties.

Adaptation in fractions of a second

The piezo controls can now be set in such a way that waves are able to propagate through the sheet-metal strip “perfectly normally”, i.e. as though no aluminum cylinders were attached to it. Another configuration enables a certain frequency spectrum of the waves to be absorbed. And this muffling is variable as the piezo elements can alter their elastic properties electronically in fractions of a second – from low to high stiffness. Bergamini explains what could develop from the research results: “Imagine you produce a sheet of metal, imprinted with an electronic circuit and small piezo elements at regular intervals. This sheet metal could be programmed electronically to block a certain vibration frequency. The interesting thing is that even if you cut off part of the sheet, the waves in the cropped section would largely spread in the same way as in the initial piece.” This method could be used on three-dimensional components.

Such a “metamaterial” could fundamentally revolutionize mechanical engineering and plant construction. Until now, the vibration properties were already determined in the selection of material and the geometry of the part. In future, the material could react to current vibration readings and adapt its vibration properties at lightning speed.

Further research on “programmable materials“

During the Phononic Crystal with Adaptive Connectivity research project, Empa-researcher Bergamini collaborated with Paolo Ermanni’s group at ETH Zurich and Massimo Ruzzene from Georgia Institute of Technology. In a follow-up project, the programmability of the prototype is to be expanded: “Until now, every piezo element has reacted to vibrations alone, independent of its neighbor,” explains Bergamini. “As the next step, we want to interconnect the elements with each other to be able to control them jointly or in a coordinated fashion.”

Info: Metamaterials (Wikipedia - http://en.wikipedia.org/wiki/Metamaterial)
Metamaterials are artificial media structured on a size scale smaller than the wavelength of external stimuli. Materials of interest exhibit properties not found in nature, such as negative index of refraction. They are cellular assemblies of multiple elements fashioned from materials including metals and plastics, arranged in periodic patterns. Metamaterials gain their properties not from their constituents, but from their exactingly-designed structures. Their precise shape, geometry, size, orientation and arrangement can affect light or sound in a manner that is unachievable with conventional materials.

Dr. Andrea Bergamini | newswise
Further information:
http://www.empa.ch

Further reports about: Connectivity Empa Metal Sheet Technology construction geometry materials properties waves

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>