Sharpening the Nanofocus: Berkeley Lab Researchers Use Nanoantenna to Enhance Plasmonic Sensing

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with researchers at the University of Stuttgart in Germany, report the first experimental demonstration of antenna-enhanced gas sensing at the single particle level. By placing a palladium nanoparticle on the focusing tip of a gold nanoantenna, they were able to clearly detect changes in the palladium’s optical properties upon exposure to hydrogen.

“We have demonstrated resonant antenna-enhanced single-particle hydrogen sensing in the visible region and presented a fabrication approach to the positioning of a single palladium nanoparticle in the nanofocus of a gold nanoantenna,” says Paul Alivisatos, Berkeley Lab’s director and the leader of this research. “Our concept provides a general blueprint for amplifying plasmonic sensing signals at the single-particle level and should pave the road for the optical observation of chemical reactions and catalytic activities in nanoreactors, and for local biosensing.”

Alivisatos, who is also the Larry and Diane Bock Professor of Nanotechnology at the University of California, Berkeley, is the corresponding author of a paper in the journal Nature Materials describing this research. The paper is titled “Nanoantenna-enhanced gas sensing in a single tailored nanofocus.” Co-authoring the paper with Alivisatos were Laura Na Liu, Ming Tang, Mario Hentschel and Harald Giessen.

One of the hottest new fields in technology today is plasmonics – the confinement of electromagnetic waves in dimensions smaller than half-the-wavelength of the incident photons in free space. Typically this is done at the interface between metallic nanostructures, usually gold, and a dielectric, usually air. The confinement of the electromagnetic waves in these metallic nanostructures generates electronic surface waves called “plasmons.” A matching of the oscillation frequency between plasmons and the incident electromagnetic waves gives rise to a phenomenon known as localized surface plasmon resonance (LSPR), which can concentrate the electromagnetic field into a volume less than a few hundred cubic nanometers. Any object brought into this locally confined field – referred to as the nanofocus – will influence the LSPR in a manner that can be detected via dark-field microscopy.

“Nanofocusing has immediate implications for plasmonic sensing,” says Laura Na Liu, lead author of the Nature Materials paper who was at the time the work was done a member of Alivisatos’ research group but is now with Rice University. “Metallic nanostructures with sharp corners and edges that form a pointed tip are especially favorable for plasmonic sensing because the field strengths of the electromagnetic waves are so strongly enhanced over such an extremely small sensing volume.”

Plasmonic sensing is especially promising for the detection of flammable gases such as hydrogen, where the use of sensors that require electrical measurements pose safety issues because of the potential threat from sparking. Hydrogen, for example, can ignite or explode in concentrations of only four-percent. Palladium was seen as a prime candidate for the plasmonic sensing of hydrogen because it readily and rapidly absorbs hydrogen that alters its electrical and dielectric properties. However, the LSPRs of palladium nanoparticles yield broad spectral profiles that make detecting changes extremely difficult.

“In our resonant antenna-enhanced scheme, we use double electron-beam lithography in combination with a double lift-off procedure to precisely position a single palladium nanoparticle in the nanofocus of a gold nanoantenna,” Liu says. “The strongly enhanced gold-particle plasmon near-fields can sense the change in the dielectric function of the proximal palladium nanoparticle as it absorbs or releases hydrogen. Light scattered by the system is collected by a dark-field microscope with attached spectrometer and the LSPR change is read out in real time.”

Alivisatos, Liu and their co-authors found that the antenna enhancement effect could be controlled by changing the distance between the palladium nanoparticle and the gold antenna, and by changing the shape of the antenna.

“By amplifying sensing signals at the single-particle level, we eliminate the statistical and average characteristics inherent to ensemble measurements,” Liu says. “Moreover, our antenna-enhanced plasmonic sensing technique comprises a noninvasive scheme that is biocompatible and can be used in aqueous environments, making it applicable to a variety of physical and biochemical materials.”

For example, by replacing the palladium nanoparticle with other nanocatalysts, such as ruthenium, platinum, or magnesium, Liu says their antenna-enhanced plasmonic sensing scheme can be used to monitor the presence of numerous other important gases in addition to hydrogen, including carbon dioxide and the nitrous oxides. This technique also offers a promising plasmonic sensing alternative to the fluorescent detection of catalysis, which depends upon the challenging task of finding appropriate fluorophores. Antenna-enhanced plasmonic sensing also holds potential for the observation of single chemical or biological events.

“We believe our antenna-enhanced sensing technique can serve as a bridge between plasmonics and biochemistry,” Liu says. “Plasmonic sensing offers a unique tool for optically probing biochemical processes that are optically inactive in nature. In addition, since plasmonic nanostructures made from gold or silver do not bleach or blink, they allow for continuous observation, an essential capability for in-situ monitoring of biochemical behavior.”

This research was supported by the DOE Office of Science and the German ministry of research.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Additional information:

For more information about the research of Paul Alivisatos, visit the Website at http://www.cchem.berkeley.edu/pagrp/

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors