Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor construction

21.02.2012
New sensor construction enables supersensitive and high-frequency non-electric strain measurement in combination with fast mounting

A special sensor construction for strain measurement was developed in a research project at Günter-Köhler-Institut für Fügetechnik und Werkstoffprüfung GmbH (ifw) in Jena. This construction allows a multiple use of the fiber bragg grating sensors (FBGS), which are fixed in a way that the sensor housing does not disturb their high sensitivity.


The prototype
photo: ifw jena

FBGS are sensors where a UV-Laser has inscribed a grating (interference filter) in a section of the glass fiber. If the fiber gets minimally stretched or compressed (1 pm/1 µε), the reflected wavelength inside the fiber changes because the grating spaces get bigger or smaller. This effect can also be caused by temperature differences. These small strain changes can be detected and analyzed with special opto-electric devices (interrogators). The advantage of this technology is that parameters like strain or temperature are measured and transmitted in a non-electrical way. This makes these sensors suitable for an application in electro-magnetic fields, on high voltage power lines or in explosion-protected zones. An easy handling and the reusability of fiber bragg grating sensors are essential for a further distribution and cost reduction of this still rather expensive technology.

Usually FBGS are glued on the object which makes a reuse of the fiber impossible, because the fiber will get destroyed during the dismounting. That is why the sensor is considered a "lost sensor" after the measurement tasks. There are also holding constructions for the sensors which can be non-destructively dismounted and which keep the initial tension. But the disadvantage of such constructions is the mechanical damping which lowers the sensitivity and the ability to transmit high frequencies.

The new sensor construction combines the advantages of the fiber bragg grating technology with an easy mounting without losing the high frequency sensitivity. Therefore the sensor construction is divided into two parts, each like a fixed bearing. The only connection between these two parts is the sensitive part of the fiber itself, which prevents the damping. For the dismounting, however, it is necessary to keep the initial tension. This is realized through a transport lock which is applied before dismounting. It also protects the fiber against overload.

In co-operation with the University of Applied Sciences Jena the functionality was proved by means of a prototype which was tested on a spot welding gun measuring force. The detailed resolution of the spot welding process is important. The holding force and also very small force differences during the current time are measurable. Weld spatter and even the development of the nugget diameter are visible, which makes the sensor suitable for a later use in welding quality control systems. The aim of manufacturing industry still is to have a 100% non-destructive quality control of spot welds. This new sensor construction has the potential to make the production of e.g. car bodies safer and more efficient.

This project was sponsored via EuroNorm Gesellschaft für Qualitätssicherung und Innovationsmanagement mbH by Federal Ministry of Economics and Technology within the promotional program “Promotion of initial industrial research in disadvantaged regions” (support code: VF081021).

Dr.-Ing. H. Müller, Dipl.-Ing. (FH) J. Kammann und Dipl.-Ing. (FH) S. Lorenz

Sigrid Neef | idw
Further information:
http://www.ifw-strahltechnik.de/
http://www.fh-jena.de/

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>