Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor construction

21.02.2012
New sensor construction enables supersensitive and high-frequency non-electric strain measurement in combination with fast mounting

A special sensor construction for strain measurement was developed in a research project at Günter-Köhler-Institut für Fügetechnik und Werkstoffprüfung GmbH (ifw) in Jena. This construction allows a multiple use of the fiber bragg grating sensors (FBGS), which are fixed in a way that the sensor housing does not disturb their high sensitivity.


The prototype
photo: ifw jena

FBGS are sensors where a UV-Laser has inscribed a grating (interference filter) in a section of the glass fiber. If the fiber gets minimally stretched or compressed (1 pm/1 µε), the reflected wavelength inside the fiber changes because the grating spaces get bigger or smaller. This effect can also be caused by temperature differences. These small strain changes can be detected and analyzed with special opto-electric devices (interrogators). The advantage of this technology is that parameters like strain or temperature are measured and transmitted in a non-electrical way. This makes these sensors suitable for an application in electro-magnetic fields, on high voltage power lines or in explosion-protected zones. An easy handling and the reusability of fiber bragg grating sensors are essential for a further distribution and cost reduction of this still rather expensive technology.

Usually FBGS are glued on the object which makes a reuse of the fiber impossible, because the fiber will get destroyed during the dismounting. That is why the sensor is considered a "lost sensor" after the measurement tasks. There are also holding constructions for the sensors which can be non-destructively dismounted and which keep the initial tension. But the disadvantage of such constructions is the mechanical damping which lowers the sensitivity and the ability to transmit high frequencies.

The new sensor construction combines the advantages of the fiber bragg grating technology with an easy mounting without losing the high frequency sensitivity. Therefore the sensor construction is divided into two parts, each like a fixed bearing. The only connection between these two parts is the sensitive part of the fiber itself, which prevents the damping. For the dismounting, however, it is necessary to keep the initial tension. This is realized through a transport lock which is applied before dismounting. It also protects the fiber against overload.

In co-operation with the University of Applied Sciences Jena the functionality was proved by means of a prototype which was tested on a spot welding gun measuring force. The detailed resolution of the spot welding process is important. The holding force and also very small force differences during the current time are measurable. Weld spatter and even the development of the nugget diameter are visible, which makes the sensor suitable for a later use in welding quality control systems. The aim of manufacturing industry still is to have a 100% non-destructive quality control of spot welds. This new sensor construction has the potential to make the production of e.g. car bodies safer and more efficient.

This project was sponsored via EuroNorm Gesellschaft für Qualitätssicherung und Innovationsmanagement mbH by Federal Ministry of Economics and Technology within the promotional program “Promotion of initial industrial research in disadvantaged regions” (support code: VF081021).

Dr.-Ing. H. Müller, Dipl.-Ing. (FH) J. Kammann und Dipl.-Ing. (FH) S. Lorenz

Sigrid Neef | idw
Further information:
http://www.ifw-strahltechnik.de/
http://www.fh-jena.de/

More articles from Materials Sciences:

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Nature's toughest substances decoded
05.12.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>