Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor construction

21.02.2012
New sensor construction enables supersensitive and high-frequency non-electric strain measurement in combination with fast mounting

A special sensor construction for strain measurement was developed in a research project at Günter-Köhler-Institut für Fügetechnik und Werkstoffprüfung GmbH (ifw) in Jena. This construction allows a multiple use of the fiber bragg grating sensors (FBGS), which are fixed in a way that the sensor housing does not disturb their high sensitivity.


The prototype
photo: ifw jena

FBGS are sensors where a UV-Laser has inscribed a grating (interference filter) in a section of the glass fiber. If the fiber gets minimally stretched or compressed (1 pm/1 µε), the reflected wavelength inside the fiber changes because the grating spaces get bigger or smaller. This effect can also be caused by temperature differences. These small strain changes can be detected and analyzed with special opto-electric devices (interrogators). The advantage of this technology is that parameters like strain or temperature are measured and transmitted in a non-electrical way. This makes these sensors suitable for an application in electro-magnetic fields, on high voltage power lines or in explosion-protected zones. An easy handling and the reusability of fiber bragg grating sensors are essential for a further distribution and cost reduction of this still rather expensive technology.

Usually FBGS are glued on the object which makes a reuse of the fiber impossible, because the fiber will get destroyed during the dismounting. That is why the sensor is considered a "lost sensor" after the measurement tasks. There are also holding constructions for the sensors which can be non-destructively dismounted and which keep the initial tension. But the disadvantage of such constructions is the mechanical damping which lowers the sensitivity and the ability to transmit high frequencies.

The new sensor construction combines the advantages of the fiber bragg grating technology with an easy mounting without losing the high frequency sensitivity. Therefore the sensor construction is divided into two parts, each like a fixed bearing. The only connection between these two parts is the sensitive part of the fiber itself, which prevents the damping. For the dismounting, however, it is necessary to keep the initial tension. This is realized through a transport lock which is applied before dismounting. It also protects the fiber against overload.

In co-operation with the University of Applied Sciences Jena the functionality was proved by means of a prototype which was tested on a spot welding gun measuring force. The detailed resolution of the spot welding process is important. The holding force and also very small force differences during the current time are measurable. Weld spatter and even the development of the nugget diameter are visible, which makes the sensor suitable for a later use in welding quality control systems. The aim of manufacturing industry still is to have a 100% non-destructive quality control of spot welds. This new sensor construction has the potential to make the production of e.g. car bodies safer and more efficient.

This project was sponsored via EuroNorm Gesellschaft für Qualitätssicherung und Innovationsmanagement mbH by Federal Ministry of Economics and Technology within the promotional program “Promotion of initial industrial research in disadvantaged regions” (support code: VF081021).

Dr.-Ing. H. Müller, Dipl.-Ing. (FH) J. Kammann und Dipl.-Ing. (FH) S. Lorenz

Sigrid Neef | idw
Further information:
http://www.ifw-strahltechnik.de/
http://www.fh-jena.de/

More articles from Materials Sciences:

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

nachricht When Proteins Shake Hands
19.02.2018 | Friedrich-Schiller-Universität Jena

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>