Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-cleaning surfaces: The importance of a single groove

11.09.2014

An innovative algorithm exposes the energy pathways that cause super-repellent surfaces to stop working.

‘Superhydrophobic’ surfaces, such as anti-icing or self-cleaning windows, are remarkably effective at repelling water molecules. However, they may suddenly — and dramatically — lose their superhydrophobic features. A*STAR researchers have now identified a cause for the widespread ‘wetting transition’ by pinpointing how infiltration of a single microscopic groove can cause such an event[1].


Computer simulations show that when liquid infiltrates a single gap between microscopic pillars (left), it causes extensive wetting on superhydrophobic surfaces.

Reproduced, with permission, from Ref. 1 © 2014 American Chemical Society

Weiqing Ren from the A*STAR Institute of High Performance Computing and the National University of Singapore used a ‘climbing string’ computational technique to model a micropatterned surface that uses microfabricated pillars to trap air pockets and so repel water molecules.

When a water droplet contacts a superhydrophobic interface, it immediately beads up and forms a near-perfect sphere. Under conditions of thermal or vibrational stress, however, the water droplet collapses and fully wets the substrate. This transition occurs when enough work is supplied to cross a bottleneck, known as an energy barrier, connecting the wet and dry states.

Identifying where energy barriers occur on micropatterned surfaces could dramatically improve their manufacture. A promising way to study this problem is by using computer models of ‘minimum energy paths’ (MEPs), which are intermediate structures during the transition between two states. Currently, most algorithms are designed to only identify the points in a system where energy minimums occur; the unstable nature of energy barriers makes them trickier to spot.

Ren’s method strings together the wet and dry minimum energy states through a smooth curve. An algorithm then seeks out MEPs available for the transition by shifting the string’s endpoint to higher and higher energies. This changes the string shape and eventually a ‘saddle point’ emerges when the physical forces acting on the curve reach a steady state. The shape of the saddle point corresponds to the energy barrier.

“Unlike other techniques, the climbing string method gives direct control over the energy of the evolving endpoint — guaranteeing that the computed saddle point is directly connected to the particular energy minimum,” says Ren.

Simulating a superhydrophobic grid of microscopic pillars with the climbing string algorithm revealed the mechanisms of wetting in striking detail (see image). The critical saddle point proved to be the entry of a small quantity of liquid into a single groove between micropillars. Crossing this barrier enabled the liquid to propagate laterally across the surface in a stepwise fashion, often nucleating from a central point before zipping along the grooves and filling them.

“By numerically studying energy landscapes, we now have a quantitative basis for designing optimized patterned surfaces in engineered systems,” says Ren.

Reference

1. Ren, W. Wetting transition on patterned surfaces: Transition states and energy barriers. Langmuir 30, 2879–2885 (2014).

Associated links

Lee Swee Heng | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR Science Simulating algorithm climbing droplet importance method microscopic pillars small surfaces technique transition

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>