Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-cleaning surfaces: The importance of a single groove

11.09.2014

An innovative algorithm exposes the energy pathways that cause super-repellent surfaces to stop working.

‘Superhydrophobic’ surfaces, such as anti-icing or self-cleaning windows, are remarkably effective at repelling water molecules. However, they may suddenly — and dramatically — lose their superhydrophobic features. A*STAR researchers have now identified a cause for the widespread ‘wetting transition’ by pinpointing how infiltration of a single microscopic groove can cause such an event[1].


Computer simulations show that when liquid infiltrates a single gap between microscopic pillars (left), it causes extensive wetting on superhydrophobic surfaces.

Reproduced, with permission, from Ref. 1 © 2014 American Chemical Society

Weiqing Ren from the A*STAR Institute of High Performance Computing and the National University of Singapore used a ‘climbing string’ computational technique to model a micropatterned surface that uses microfabricated pillars to trap air pockets and so repel water molecules.

When a water droplet contacts a superhydrophobic interface, it immediately beads up and forms a near-perfect sphere. Under conditions of thermal or vibrational stress, however, the water droplet collapses and fully wets the substrate. This transition occurs when enough work is supplied to cross a bottleneck, known as an energy barrier, connecting the wet and dry states.

Identifying where energy barriers occur on micropatterned surfaces could dramatically improve their manufacture. A promising way to study this problem is by using computer models of ‘minimum energy paths’ (MEPs), which are intermediate structures during the transition between two states. Currently, most algorithms are designed to only identify the points in a system where energy minimums occur; the unstable nature of energy barriers makes them trickier to spot.

Ren’s method strings together the wet and dry minimum energy states through a smooth curve. An algorithm then seeks out MEPs available for the transition by shifting the string’s endpoint to higher and higher energies. This changes the string shape and eventually a ‘saddle point’ emerges when the physical forces acting on the curve reach a steady state. The shape of the saddle point corresponds to the energy barrier.

“Unlike other techniques, the climbing string method gives direct control over the energy of the evolving endpoint — guaranteeing that the computed saddle point is directly connected to the particular energy minimum,” says Ren.

Simulating a superhydrophobic grid of microscopic pillars with the climbing string algorithm revealed the mechanisms of wetting in striking detail (see image). The critical saddle point proved to be the entry of a small quantity of liquid into a single groove between micropillars. Crossing this barrier enabled the liquid to propagate laterally across the surface in a stepwise fashion, often nucleating from a central point before zipping along the grooves and filling them.

“By numerically studying energy landscapes, we now have a quantitative basis for designing optimized patterned surfaces in engineered systems,” says Ren.

Reference

1. Ren, W. Wetting transition on patterned surfaces: Transition states and energy barriers. Langmuir 30, 2879–2885 (2014).

Associated links

Lee Swee Heng | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR Science Simulating algorithm climbing droplet importance method microscopic pillars small surfaces technique transition

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>