Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-cleaning surfaces: The importance of a single groove

11.09.2014

An innovative algorithm exposes the energy pathways that cause super-repellent surfaces to stop working.

‘Superhydrophobic’ surfaces, such as anti-icing or self-cleaning windows, are remarkably effective at repelling water molecules. However, they may suddenly — and dramatically — lose their superhydrophobic features. A*STAR researchers have now identified a cause for the widespread ‘wetting transition’ by pinpointing how infiltration of a single microscopic groove can cause such an event[1].


Computer simulations show that when liquid infiltrates a single gap between microscopic pillars (left), it causes extensive wetting on superhydrophobic surfaces.

Reproduced, with permission, from Ref. 1 © 2014 American Chemical Society

Weiqing Ren from the A*STAR Institute of High Performance Computing and the National University of Singapore used a ‘climbing string’ computational technique to model a micropatterned surface that uses microfabricated pillars to trap air pockets and so repel water molecules.

When a water droplet contacts a superhydrophobic interface, it immediately beads up and forms a near-perfect sphere. Under conditions of thermal or vibrational stress, however, the water droplet collapses and fully wets the substrate. This transition occurs when enough work is supplied to cross a bottleneck, known as an energy barrier, connecting the wet and dry states.

Identifying where energy barriers occur on micropatterned surfaces could dramatically improve their manufacture. A promising way to study this problem is by using computer models of ‘minimum energy paths’ (MEPs), which are intermediate structures during the transition between two states. Currently, most algorithms are designed to only identify the points in a system where energy minimums occur; the unstable nature of energy barriers makes them trickier to spot.

Ren’s method strings together the wet and dry minimum energy states through a smooth curve. An algorithm then seeks out MEPs available for the transition by shifting the string’s endpoint to higher and higher energies. This changes the string shape and eventually a ‘saddle point’ emerges when the physical forces acting on the curve reach a steady state. The shape of the saddle point corresponds to the energy barrier.

“Unlike other techniques, the climbing string method gives direct control over the energy of the evolving endpoint — guaranteeing that the computed saddle point is directly connected to the particular energy minimum,” says Ren.

Simulating a superhydrophobic grid of microscopic pillars with the climbing string algorithm revealed the mechanisms of wetting in striking detail (see image). The critical saddle point proved to be the entry of a small quantity of liquid into a single groove between micropillars. Crossing this barrier enabled the liquid to propagate laterally across the surface in a stepwise fashion, often nucleating from a central point before zipping along the grooves and filling them.

“By numerically studying energy landscapes, we now have a quantitative basis for designing optimized patterned surfaces in engineered systems,” says Ren.

Reference

1. Ren, W. Wetting transition on patterned surfaces: Transition states and energy barriers. Langmuir 30, 2879–2885 (2014).

Associated links

Lee Swee Heng | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR Science Simulating algorithm climbing droplet importance method microscopic pillars small surfaces technique transition

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>