Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Segregation Behaviors and Radial Distribution of Dopant Atoms in Silicon Nanowires

28.02.2011
National Institute for Material Science, Japan Science and Technology Agency and University of Tsukuba announced on February 4, 2011 that they succeeded in detecting nondestructively dynamic behaviors of doped impurities in Si nanowires (Si NWs) coated by SiO2 to make surrounding gate field-effect transistors.

Understanding the dynamic behaviors of dopant atoms in Si NWs is the key to realize low-power and high-speed transistors using Si NWs. The segregation behavior of boron (B) and phosphorus (P) atoms in B- and P-doped Si NWs (20 nm in diameter) during thermal oxidation was closely analyzed.

Local vibrational peaks and Fano broadening in optical phonon peaks of B-doped Si NWs were used to detect the behavior of B. Electron spin resonance (ESR) signals from conduction electrons were suitable means for P-doped Si NWs. The radial distribution of P atoms in Si NWs was also investigated to prove the difference in segregation behaviors between of P and B atoms.

B atoms were found to segregate preferentially in the surface oxide layer, whereas P atoms tend to accumulate around the interface inside the Si nanowire. In addition, segregation of B atoms was found to be suppressed by the stress applied to Si NWs.

Details were presented in NANO Letters of American Chemical Society*.

Journal information

Naoki Fukuda, Shinya Ishida, Shigeki Yokono, Ryo Takiguchi, Jun Chen, Takashi Sekiguchi, and Kouichi Murakami, "Segragation Behaviors and Radial Distribution of Dopant Atoms in Silicon Nanowires", NANO Letters (2011) doi: 10.1021/nl103773e Published online 24 January 2011.

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.nims.go.jp/english/modules/news/article.php?a_id=739
http://www.researchsea.com

Further reports about: Atoms Dopant Letters Nano Nanowires P-doped Segregation Silicon Valley

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>